Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 38
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Langmuir ; 40(3): 1594-1603, 2024 Jan 23.
Artículo en Inglés | MEDLINE | ID: mdl-38193745

RESUMEN

Gold nanoclusters (AuNCs) are an emerging type of luminescent probe, featuring good biocompatibility, high photostability, and large Stoke shifts. Their lack of colloidal stability is, however, a drawback for many applications. Here, we report the stabilization of AuNCs emitting in the NIR by a thiol-terminated polystyrene chain (Mn = 5000 g mol-1). The optical properties of this nanocomposite remain invariant for 2 years in THF. To use the PS5k-AuNCs in an aqueous environment, these were encapsulated into polymer micelles using a polystyrene-b-poly(ethylene glycol) copolymer. The resulting hierarchical constructs, with diameters of ca. 125 to 215 nm, have promising properties for applications as luminescent probes such as contrast agents for biomedical imaging.

2.
ACS Appl Mater Interfaces ; 16(1): 1587-1595, 2024 Jan 10.
Artículo en Inglés | MEDLINE | ID: mdl-38153798

RESUMEN

Structural color pigments offer an efficient, sustainable, and environmentally friendly approach to obtain waterborne polymer coatings. We developed polymer-based spherical photonic pigments to incorporate in aqueous dispersions of polymer nanoparticles used to obtain waterborne polymer films. Our spherical photonic pigments are assembled from polymer nanoparticles and are highly stable in water dispersion, maintaining their optical properties in the final polymer films. Unlike conventional dyes and pigments, which are prone to photobleaching because they are based on the absorption of light, photonic pigments rely on the selective reflection of light by their nanostructure and therefore are not photodegraded. Furthermore, different colors can be obtained from the same materials, changing only their nanostructure, in this case, the size of the polymer nanoparticles. Our novel spherical photonic pigments are noniridescent and can be incorporated in aqueous polymer nanoparticle dispersions without deteriorating their structure to produce waterborne polymer coatings with structural color. This approach for structural colored waterborne polymer coatings is efficient, simple, and environmentally friendly, offering excellent prospects for application in paints and coatings.

3.
Polymers (Basel) ; 15(19)2023 Sep 29.
Artículo en Inglés | MEDLINE | ID: mdl-37835984

RESUMEN

This review covers strategies to prepare high-performance emissive polymer nanomaterials, combining very high brightness and photostability, to respond to the drive for better imaging quality and lower detection limits in fluorescence imaging and sensing applications. The more common approaches to obtaining high-brightness nanomaterials consist of designing polymer nanomaterials carrying a large number of fluorescent dyes, either by attaching the dyes to individual polymer chains or by encapsulating the dyes in nanoparticles. In both cases, the dyes can be covalently linked to the polymer during polymerization (by using monomers functionalized with fluorescent groups), or they can be incorporated post-synthesis, using polymers with reactive groups, or encapsulating the unmodified dyes. Silica nanoparticles in particular, obtained by the condensation polymerization of silicon alcoxides, provide highly crosslinked environments that protect the dyes from photodegradation and offer excellent chemical modification flexibility. An alternative and less explored strategy is to increase the brightness of each individual dye. This can be achieved by using nanostructures that couple dyes to plasmonic nanoparticles so that the plasmon resonance can act as an electromagnetic field concentrator to increase the dye excitation efficiency and/or interact with the dye to increase its emission quantum yield.

4.
Adv Sci (Weinh) ; 10(36): e2304488, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37897318

RESUMEN

A spatial view of macroscopic polymer material properties, in terms of nanostructure and irregularities, can help to better understand engineering processes such as when materials may fail. However, bridging the gap between the molecular-scale arrangement of polymer chains and the spatially resolved macroscopic properties of a material poses numerous difficulties. Herein, an integrated messenger material that can report on the material micro- to nanostructure and its processes is introduced. It is based on polymer chains labeled with fluorescent dyes that feature Förster resonance energy transfer (FRET) dependent on chain conformation and concentration within a host polymer material. These FRET materials are integrated within electrospun polystyrene microfibers, and the FRET is analyzed by confocal laser scanning microscopy (CLSM). Importantly, the use of CLSM allows a spatial view of material nanostructure and irregularities within the microfibers, where changes in FRET are significant when differences in fiber geometries and regularities exist. Furthermore, changes in FRET observed in damaged regions of the fibers indicate changes in polymer conformation and/or concentration as the material changes during compression. The system promises high utility for applications where nano-to-macro communication is needed for a better understanding of material processes.

5.
Pharmaceutics ; 15(6)2023 May 30.
Artículo en Inglés | MEDLINE | ID: mdl-37376073

RESUMEN

To investigate the impact of the surface functionalization of mesoporous silica nanoparticle (MSN) carriers in the physical state, molecular mobility and the release of Fenofibrate (FNB) MSNs with ordered cylindrical pores were prepared. The surface of the MSNs was modified with either (3-aminopropyl) triethoxysilane (APTES) or trimethoxy(phenyl)silane (TMPS), and the density of the grafted functional groups was quantified via 1H-NMR. The incorporation in the ~3 nm pores of the MSNs promoted FNB amorphization, as evidenced via FTIR, DSC and dielectric analysis, showing no tendency to undergo recrystallization in opposition to the neat drug. Moreover, the onset of the glass transition was slightly shifted to lower temperatures when the drug was loaded in unmodified MSNs, and MSNs modified with APTES composite, while it increased in the case of TMPS-modified MSNs. Dielectric studies have confirmed these changes and allowed researchers to disclose the broad glass transition in multiple relaxations associated with different FNB populations. Moreover, DRS showed relaxation processes in dehydrated composites associated with surface-anchored FNB molecules whose mobility showed a correlation with the observed drug release profiles.

6.
Colloids Surf B Biointerfaces ; 220: 112872, 2022 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-36179611

RESUMEN

Fluorescent silica nanoparticles with a polymer shell of poly (D, L-lactide-co-glycolide) (PLGA) can provide traceable cell-triggered delivery of the anticancer drug doxorubicin (DOX), protecting the cargo while in transit and releasing it only intracellularly. PLGA with 50:50 lactide:glycolide ratio was grown by surface-initiated ring-opening polymerization (ROP) from silica nanoparticles of ca. 50 nm diameter, doped with a perylenediimide (PDI) fluorescent dye anchored to the silica structure. After loading DOX, release from the core-shell particles was evaluated in solution at physiological pH (7.4), and in human breast cancer cells (MCF-7) after internalization. The hybrid silica-PLGA nanoparticles can accommodate a large cargo of DOX, and the release in solution (PBS) due to PLGA hydrolysis is negligible for at least 72 h. However, once internalized in MCF-7 cells, the nanoparticles release the DOX cargo by degradation of the PLGA. Accumulation of DOX in the nucleus causes cell apoptosis, with the drug-loaded nanoparticles found to be as potent as free DOX. Our fluorescently traceable hybrid silica-PLGA nanoparticles with cell-triggered cargo release offer excellent prospects for the controlled delivery of anticancer drugs, protecting the cargo while in transit and efficiently releasing the drug once inside the cell.


Asunto(s)
Antineoplásicos , Nanopartículas , Humanos , Dióxido de Silicio , Doxorrubicina/farmacología , Doxorrubicina/química , Nanopartículas/química , Polímeros/química , Portadores de Fármacos/química
7.
Pharmaceutics ; 14(7)2022 Jun 30.
Artículo en Inglés | MEDLINE | ID: mdl-35890283

RESUMEN

The need for new therapeutic approaches for triple-negative breast cancer is a clinically relevant problem that needs to be solved. Using a multi-targeting approach to enhance cancer cell uptake, we synthesized a new family of ruthenium(II) organometallic complexes envisaging simultaneous active and passive targeting, using biotin and polylactide (PLA), respectively. All compounds with the general formula, [Ru(η5-CpR)(P)(2,2'-bipy-4,4'-PLA-biotin)][CF3SO3], where R is -H or -CH3 and P is P(C6H5)3, P(C6H4F)3 or P(C6H4OCH3)3, were tested against triple-negative breast cancer cells MDA-MB-231 showing IC50 values between 2.3-14.6 µM, much better than cisplatin, a classical chemotherapeutic drug, in the same experimental conditions. We selected compound 1 (where R is H and P is P(C6H5)3), for further studies as it was the one showing the best biological effect. In a competitive assay with biotin, we showed that cell uptake via SMVT receptors seems to be the main transport route into the cells for this compound, validating the strategy of including biotin in the design of the compound. The effects of the compound on the hallmarks of cancer show that the compound leads to apoptosis, interferes with proliferation by affecting the formation of cell colonies in a dose-dependent manner and disrupts the cell cytoskeleton. Preliminary in vivo assays in N: NIH(S)II-nu/nu mice show that the concentrations of compound 1 used in this experiment (maximum 4 mg/kg) are safe to use in vivo, although some signs of liver toxicity are already found. In addition, the new compound shows a tendency to control tumor growth, although not significantly. In sum, we showed that compound 1 shows promising anti-cancer effects, bringing a new avenue for triple-negative breast cancer therapy.

8.
Molecules ; 27(9)2022 May 09.
Artículo en Inglés | MEDLINE | ID: mdl-35566393

RESUMEN

Molecular permeability through polymer brush chains is implicated in surface lubrication, wettability, and solute capture and release. Probing molecular transport through polymer brushes can reveal information on the polymer nanostructure, with a permeability that is dependent on chain conformation and grafting density. Herein, we introduce a brush system to study the molecular transport of fluorophores from an aqueous droplet into the external "dry" polymer brush with the vapour phase above. The brushes consist of a random copolymer of N-isopropylacrylamide and a Förster resonance energy transfer (FRET) donor-labelled monomer, forming ultrathin brush architectures of about 35 nm in solvated height. Aqueous droplets containing a separate FRET acceptor are placed onto the surfaces, with FRET monitored spatially around the 3-phase contact line. FRET is used to monitor the transport from the droplet to the outside brush, and the changing internal distributions with time as the droplets prepare to recede. This reveals information on the dynamics and distances involved in the molecular transport of the FRET acceptor towards and away from the droplet contact line, which are strongly dependent on the relative humidity of the system. We anticipate our system to be extremely useful for studying lubrication dynamics and surface droplet wettability processes.


Asunto(s)
Transferencia Resonante de Energía de Fluorescencia , Polímeros , Polímeros/química , Soluciones , Agua , Humectabilidad
9.
Nanoscale ; 13(41): 17199-17217, 2021 Oct 28.
Artículo en Inglés | MEDLINE | ID: mdl-34622909

RESUMEN

Gold nanoparticles with only a few atoms, known as gold nanoclusters (AuNCs), have dimensions below 2 nm and feature singular properties such as size dependent luminescence. AuNCs are also highly photostable and have catalytic activity, low toxicity and good biocompatibility. With these properties, they are extremely promising candidates for application in bioimaging, sensing and catalysis. However, when stabilized only with small capping ligands, their use is hindered by lack of colloidal stability. Encapsulation of the AuNCs can contribute to provide a more robust protection and even to improve their properties. Here, we review the encapsulation of AuNCs in polymers, silica and metal organic frameworks (MOFs) for applications in bioimaging, sensing and catalysis.


Asunto(s)
Nanopartículas del Metal , Estructuras Metalorgánicas , Catálisis , Oro , Luminiscencia
10.
ACS Nano ; 15(7): 11779-11788, 2021 Jul 27.
Artículo en Inglés | MEDLINE | ID: mdl-34240840

RESUMEN

The development of appropriate methods to correlate the structure and optical properties of colloidal photonic structures is still a challenge. Structural information is mostly obtained by electron, X-ray, or optical microscopy methods and X-ray diffraction, while bulk spectroscopic methods and low resolution bright-field microscopy are used for optical characterization. Here, we describe the use of reflectance confocal microscopy as a simple and intuitive technique to provide a direct correlation between the ordered/disordered structural morphology of colloidal crystals and glasses, and their corresponding optical properties.

11.
Pharmaceutics ; 13(5)2021 May 13.
Artículo en Inglés | MEDLINE | ID: mdl-34068257

RESUMEN

Highly efficient pH-modulated cargo release was achieved with a new hybrid nanocarrier composed of a mesoporous silica core with functionalized pores and a grafted pH-responsive crosslinked polymer shell of 2-(diisopropylamino)ethyl methacrylate (pKa ≈ 6.5). The retention/release performance of the system was optimized by a novel approach using selective functionalization of the silica pores to tune the carrier-cargo interaction and by tunning the amount of grafted polymer. The system features excellent retention of cationic cargo at low pH and a burst release at higher pH. This results from the expanded-collapsed conformation transition of the pH-responsive polymer shell and the simultaneous change in the interaction between the cargo and the polymer shell and the modified pore walls. At low pH, the electrostatic interaction of the cationic cargo with the protonated amine groups of the extended polymer shell retains the cargo, resulting in very low leakage (OFF state). At high pH, the electrostatic interaction with the cargo is lost (due to deprotonation of the polymer amine groups), and the polymer shell collapses, squeezing out the cargo in a burst release (ON state). Pore functionalization in combination with the stimuli-responsive polymer shell is a very promising strategy to design high-performance ON:OFF smart hybrid nanocarriers for stimuli-actuated cargo release, with great potential for application in the controlled release of drugs and other biologically active agents.

12.
Polymers (Basel) ; 13(7)2021 Mar 24.
Artículo en Inglés | MEDLINE | ID: mdl-33805231

RESUMEN

Combining organic and inorganic components at a nanoscale is an effective way to obtain high performance coating materials with excellent chemical and physical properties. This review focuses on recent approaches to prepare hybrid nanostructured waterborne coating materials combining the mechanical properties and versatility of silica as the inorganic filler, with the flexural properties and ease of processing of the polymer matrix. We cover silica-polymer coupling agents used to link the organic and inorganic components, the formation of hybrid films from these silica-polymer nanostructures, and their different applications. These hybrid nanostructures can be used to prepare high performance functional coatings with different properties from optical transparency, to resistance to temperature, hydrophobicity, anti-corrosion, resistance to scratch, and antimicrobial activity.

13.
Biofabrication ; 13(3)2021 04 07.
Artículo en Inglés | MEDLINE | ID: mdl-33455952

RESUMEN

Leveraging 3D bioprinting for processing stem cell-laden biomaterials has unlocked a tremendous potential for fabricating living 3D constructs for bone tissue engineering. Even though several bioinks developed to date display suitable physicochemical properties for stem cell seeding and proliferation, they generally lack the nanosized minerals present in native bone bioarchitecture. To enable the bottom-up fabrication of biomimetic 3D constructs for bioinstructing stem cells pro-osteogenic differentiation, herein we developed multi-bioactive nanocomposite bioinks that combine the organic and inorganic building blocks of bone. For the organic component gelatin methacrylate (GelMA), a photocrosslinkable denaturated collagen derivative used for 3D bioprinting was selected due to its rheological properties display of cell adhesion moieties to which bone tissue precursors such as human bone marrow derived mesenchymal stem cells (hBM-MSCs) can attach to. The inorganic building block was formulated by incorporating mesoporous silica nanoparticles functionalized with calcium, phosphate and dexamethasone (MSNCaPDex), which previously proven to induce osteogenic differentiation. The newly formulated photocrosslinkable nanocomposite GelMA bioink incorporating MSNCaPDex nanoparticles and laden with hBM-MSCs was successfully processed into a 3D bioprintable construct with structural fidelity, and well dispersed nanoparticles throughout the hydrogel matrix. These nanocomposite constructs could induce the deposition of apatitein vitro, thus showing attractive bioactivity properties. Viability and differentiation studies showed that hBM-MSCs remained viable and exhibited osteogenic differentiation biomarkers when incorporated in GelMA/MSNCaPDex constructs and without requiring further biochemical, nor mechanical stimuli. Overall, our nanocomposite bioink has demonstrated excellent processability via extrusion bioprinting into osteogenic constructs with potential application in bone tissue repair and regeneration.


Asunto(s)
Bioimpresión , Nanocompuestos , Diferenciación Celular , Gelatina , Humanos , Metacrilatos , Osteogénesis , Impresión Tridimensional , Dióxido de Silicio , Células Madre , Ingeniería de Tejidos , Andamios del Tejido
14.
Front Cell Dev Biol ; 8: 553444, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-33224943

RESUMEN

Mesenchymal stromal cells (MSC) hold great promise for tissue engineering and cell-based therapies due to their multilineage differentiation potential and intrinsic immunomodulatory and trophic activities. Over the past years, increasing evidence has proposed extracellular vesicles (EVs) as mediators of many of the MSC-associated therapeutic features. EVs have emerged as mediators of intercellular communication, being associated with multiple physiological processes, but also in the pathogenesis of several diseases. EVs are derived from cell membranes, allowing high biocompatibility to target cells, while their small size makes them ideal candidates to cross biological barriers. Despite the promising potential of EVs for therapeutic applications, robust manufacturing processes that would increase the consistency and scalability of EV production are still lacking. In this work, EVs were produced by MSC isolated from different human tissue sources [bone marrow (BM), adipose tissue (AT), and umbilical cord matrix (UCM)]. A serum-/xeno-free microcarrier-based culture system was implemented in a Vertical-WheelTM bioreactor (VWBR), employing a human platelet lysate culture supplement (UltraGROTM-PURE), toward the scalable production of MSC-derived EVs (MSC-EVs). The morphology and structure of the manufactured EVs were assessed by atomic force microscopy, while EV protein markers were successfully identified in EVs by Western blot, and EV surface charge was maintained relatively constant (between -15.5 ± 1.6 mV and -19.4 ± 1.4 mV), as determined by zeta potential measurements. When compared to traditional culture systems under static conditions (T-flasks), the VWBR system allowed the production of EVs at higher concentration (i.e., EV concentration in the conditioned medium) (5.7-fold increase overall) and productivity (i.e., amount of EVs generated per cell) (3-fold increase overall). BM, AT and UCM MSC cultured in the VWBR system yielded an average of 2.8 ± 0.1 × 1011, 3.1 ± 1.3 × 1011, and 4.1 ± 1.7 × 1011 EV particles (n = 3), respectively, in a 60 mL final volume. This bioreactor system also allowed to obtain a more robust MSC-EV production, regarding their purity, compared to static culture. Overall, we demonstrate that this scalable culture system can robustly manufacture EVs from MSC derived from different tissue sources, toward the development of novel therapeutic products.

15.
Adv Biosyst ; 4(11): e2000123, 2020 11.
Artículo en Inglés | MEDLINE | ID: mdl-32954683

RESUMEN

Bone regeneration requires the presence of specific factors to induce the differentiation of stem cells into osteoblasts. These factors induce osteogenesis by stimulating the expression of bone-related proteins, bone cell proliferation and differentiation. Herein, bioactive mesoporous silica nanoparticles are doped with calcium and phosphate ions while the porous network is loaded with dexamethasone (MSN-CaPDex). The bioactive MSN-CaPDex nanocarriers are prepared without affecting the narrow size distribution, pore structure, and morphology of the MSNs, while incorporating multi-stimuli, complementary ionic/biochemical bioactive mediators. The bioactive nanocarriers induce osteogenic differentiation of human bone marrow mesenchymal stem cells (hBM-MSCs) after a single-dose administration, and without the need for further soluble osteogenic factors, in contrast to the standard continuous stimulation provided by osteogenic medium. The hBM-MSCs exhibit several biomarkers of osteogenic differentiation, including alkaline phosphatase peaking at early time points, secretion of osteopontin and osteocalcin, and deposition of a calcium-rich matrix. Overall, by inducing the osteogenic differentiation of stem cells with a single-dose administration and without requiring repeated osteogenic supplementation, the newly synthesized multi-bioactive hybrid nanocarrier shows great potential for bone tissue engineering applications.


Asunto(s)
Diferenciación Celular/efectos de los fármacos , Células Madre Mesenquimatosas , Nanopartículas , Osteogénesis/efectos de los fármacos , Fosfatos de Calcio/química , Fosfatos de Calcio/farmacología , Células Cultivadas , Dexametasona/química , Dexametasona/farmacología , Portadores de Fármacos/química , Humanos , Células Madre Mesenquimatosas/clasificación , Células Madre Mesenquimatosas/efectos de los fármacos , Células Madre Mesenquimatosas/metabolismo , Dióxido de Silicio/química , Ingeniería de Tejidos
16.
Polymers (Basel) ; 12(10)2020 Sep 23.
Artículo en Inglés | MEDLINE | ID: mdl-32977680

RESUMEN

Stimuli-responsive polymer materials are used in smart nanocarriers to provide the stimuli-actuated mechanical and chemical changes that modulate cargo delivery. To take full advantage of the potential of stimuli-responsive polymers for controlled delivery applications, these have been grafted to the surface of mesoporous silica particles (MSNs), which are mechanically robust, have very large surface areas and available pore volumes, uniform and tunable pore sizes and a large diversity of surface functionalization options. Here, we explore the impact of different RAFT-based grafting strategies on the amount of a pH-responsive polymer incorporated in the shell of MSNs. Using a "grafting to" (gRAFT-to) approach we studied the effect of polymer chain size on the amount of polymer in the shell. This was compared with the results obtained with a "grafting from" (gRAFT-from) approach, which yield slightly better polymer incorporation values. These two traditional grafting methods yield relatively limited amounts of polymer incorporation, due to steric hindrance between free chains in "grafting to" and to termination reactions between growing chains in "grafting from." To increase the amount of polymer in the nanocarrier shell, we developed two strategies to improve the "grafting from" process. In the first, we added a cross-linking agent (gRAFT-cross) to limit the mobility of the growing polymer and thus decrease termination reactions at the MSN surface. On the second, we tested a hybrid grafting process (gRAFT-hybrid) where we added MSNs functionalized with chain transfer agent to the reaction media containing monomer and growing free polymer chains. Our results show that both modifications yield a significative increase in the amount of grafted polymer.

17.
Mater Sci Eng C Mater Biol Appl ; 107: 110348, 2020 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-31761176

RESUMEN

The differentiation of adult stem cells is usually performed in vitro, by exposing them to specific factors. Alternatively, one can use nanocarriers containing such factors, to be internalized by the cells. In this work we have reduce the size of those carriers to the nanoscale, developing bioactive silica nanoparticles with diameters under 100 nm, containing calcium and phosphate ions (SiNPs-CaP). These ions, once released inside adult stem cells, induce bone cell proliferation and differentiation, and stimulate the expression of bone-related proteins in a single dose administration. The SiNPs-CaP nanomaterials were prepared through a sol-gel approach, and the ions added with a post-synthesis functionalization method. The synthesized SiNPs-CaP have narrow size distribution, good colloidal stability, and show high levels of ion incorporation. Furthermore, the SiNPs-CaP have good cytocompatibility and promote the osteogenic differentiation of human bone marrow mesenchymal stem cells (hBMSC), with alkaline phosphatase, osteopontin and osteocalcin production levels comparable to the ones obtained in standard osteogenic medium. The novel bioactive SiNPs-CaP are synthesized in a simple and fast manner and show the ability to promote osteogenic differentiation after a single dose administration, independently from external osteogenic inducers, showing great potential as carriers in bone tissue engineering applications.


Asunto(s)
Calcio/administración & dosificación , Células Madre Mesenquimatosas/citología , Nanopartículas/química , Osteogénesis/efectos de los fármacos , Fosfatos/administración & dosificación , Fosfatasa Alcalina/metabolismo , Calcio/química , Calcio/farmacocinética , Diferenciación Celular/efectos de los fármacos , Células Cultivadas , Liberación de Fármacos , Humanos , Células Madre Mesenquimatosas/efectos de los fármacos , Nanopartículas/administración & dosificación , Osteocalcina/metabolismo , Osteogénesis/fisiología , Osteopontina/metabolismo , Tamaño de la Partícula , Fosfatos/química , Fosfatos/farmacocinética , Dióxido de Silicio/química
18.
J Colloid Interface Sci ; 561: 609-619, 2020 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-31757448

RESUMEN

Mesoporous silica nanoparticles (MSNs) feature ideal structural properties and surface chemistry for use as nanocarriers of molecules, polymers and biomolecules in cutting-edge applications. One important challenge remaining in their preparation is the ability to tune their diameter in the range of a few tens of nanometers, with narrow size dispersity, preferably using a simple, sustainable and scalable synthetic process. This work presents a fully controllable low-temperature and purely aqueous sol-gel method to prepare MSNs with user-defined diameters from 15 nm to 80 nm and narrow size dispersity. The method also allows modification of the pore structure and offers the possibility of incorporating a luminescent species in the silica network for optical traceability. Control was achieved by tuning the colloidal stability of the assembly of cylindrical micelles that template the MSN synthesis. Using CTAB cylindrical micelles as template and sodium hydroxide (NaOH) as catalyst, precise diameter control was achieved either by changing the pH (that controls micelle surface charge) or by adding salt at constant pH (to tune the ionic strength and charge screening). This new sustainable MSN synthesis method provides full control over the nanoparticle diameters and can be used as a platform for the application of MSNs with user-defined sizes in different fields.

19.
Nanomaterials (Basel) ; 9(3)2019 Mar 26.
Artículo en Inglés | MEDLINE | ID: mdl-30917559

RESUMEN

Among a variety of inorganic-based nanomaterials, mesoporous silica nanoparticles (MSNs) have several attractive features for application as a delivery system, due to their high surface areas, large pore volumes, uniform and tunable pore sizes, high mechanical stability, and a great diversity of surface functionalization options. We developed novel hybrid MSNs composed of a mesoporous silica nanostructure core and a pH-responsive polymer shell. The polymer shell was prepared by RAFT polymerization of 2-(diisopropylamino)ethyl methacrylate (pKa ~6.5), using a hybrid grafting approach. The hybrid nanoparticles have diameters of ca. 100 nm at pH < 6.5 and ca. 60 nm at pH > 6.5. An excellent control of cargo release is achieved by the combined effect of electrostatic interaction of the cargo with the charged silica and the extended cationic polymer chains at low pH, and the reduction of electrostatic attraction with a simultaneous collapse of the polymer chains to a globular conformation at higher pH. The system presents a very low (almost null) release rate at acidic pH values and a large release rate at basic pH, resulting from the squeezing-out effect of the coil-to-globule transition in the polymer shell.

20.
Small ; 14(40): e1802180, 2018 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-30260591

RESUMEN

Mesoporous silica materials have demonstrated a vast spectrum of applications, stimulating an intensive field of study due to their potential use as nanocarriers. Nonetheless, when produced at the nanoscale, their structural characterization is hindered due to the re-arrangement of the pores. To address this issue, this work combines molecular dynamics simulations with electron microscopy computer simulations and experimental results to provide an insight into the structure of amorphous mesoporous silica nanoparticles. The amorphous silica model is prepared using a simple melt-quench molecular dynamics method, while the reconstruction of the mesoporous nanoparticles is carried out using a methodology to avoid false symmetry in the final model. Simulated scanning transmission electron microscopy images are compared with experimental images, revealing the existence of structural domains, created by the misalignment of the pores to compensate the surface tension of these spherical nanoparticles.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...