Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Mol Neurodegener ; 16(1): 62, 2021 09 06.
Artículo en Inglés | MEDLINE | ID: mdl-34488832

RESUMEN

BACKGROUND: Cerebral glucose hypometabolism is consistently observed in individuals with Alzheimer's disease (AD), as well as in young cognitively normal carriers of the Ε4 allele of Apolipoprotein E (APOE), the strongest genetic predictor of late-onset AD. While this clinical feature has been described for over two decades, the mechanism underlying these changes in cerebral glucose metabolism remains a critical knowledge gap in the field. METHODS: Here, we undertook a multi-omic approach by combining single-cell RNA sequencing (scRNAseq) and stable isotope resolved metabolomics (SIRM) to define a metabolic rewiring across astrocytes, brain tissue, mice, and human subjects expressing APOE4. RESULTS: Single-cell analysis of brain tissue from mice expressing human APOE revealed E4-associated decreases in genes related to oxidative phosphorylation, particularly in astrocytes. This shift was confirmed on a metabolic level with isotopic tracing of 13C-glucose in E4 mice and astrocytes, which showed decreased pyruvate entry into the TCA cycle and increased lactate synthesis. Metabolic phenotyping of E4 astrocytes showed elevated glycolytic activity, decreased oxygen consumption, blunted oxidative flexibility, and a lower rate of glucose oxidation in the presence of lactate. Together, these cellular findings suggest an E4-associated increase in aerobic glycolysis (i.e. the Warburg effect). To test whether this phenomenon translated to APOE4 humans, we analyzed the plasma metabolome of young and middle-aged human participants with and without the Ε4 allele, and used indirect calorimetry to measure whole body oxygen consumption and energy expenditure. In line with data from E4-expressing female mice, a subgroup analysis revealed that young female E4 carriers showed a striking decrease in energy expenditure compared to non-carriers. This decrease in energy expenditure was primarily driven by a lower rate of oxygen consumption, and was exaggerated following a dietary glucose challenge. Further, the stunted oxygen consumption was accompanied by markedly increased lactate in the plasma of E4 carriers, and a pathway analysis of the plasma metabolome suggested an increase in aerobic glycolysis. CONCLUSIONS: Together, these results suggest astrocyte, brain and system-level metabolic reprogramming in the presence of APOE4, a 'Warburg like' endophenotype that is observable in young females decades prior to clinically manifest AD.


Asunto(s)
Aerobiosis , Apolipoproteína E4/fisiología , Glucosa/metabolismo , Glucólisis , Síntomas Prodrómicos , Adolescente , Adulto , Anciano , Enfermedad de Alzheimer/diagnóstico , Enfermedad de Alzheimer/genética , Enfermedad de Alzheimer/metabolismo , Animales , Apolipoproteína E4/genética , Astrocitos/metabolismo , Secuencia de Bases , Química Encefálica , Células Cultivadas , Diagnóstico Precoz , Metabolismo Energético , Femenino , Cromatografía de Gases y Espectrometría de Masas , Técnicas de Sustitución del Gen , Humanos , Metabolómica , Ratones , Ratones Transgénicos , Persona de Mediana Edad , Proteínas del Tejido Nervioso/genética , Proteínas del Tejido Nervioso/metabolismo , Oxidación-Reducción , Fosforilación Oxidativa , Consumo de Oxígeno/genética , Caracteres Sexuales , Análisis de la Célula Individual , Adulto Joven
2.
Front Neurosci ; 14: 742, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32848541

RESUMEN

Knowledge of lipid droplets (LDs) has evolved from simple depots of lipid storage to dynamic and functionally active organelles involved in a variety of cellular functions. Studies have now informed significant roles for LDs in cellular signaling, metabolic disease, and inflammation. While lipid droplet biology has been well explored in peripheral organs such as the liver and heart, LDs within the brain are relatively understudied. The presence and function of these dynamic organelles in the central nervous system has recently gained attention, especially in the context of neurodegeneration. In this review, we summarize the current understanding of LDs within the brain, with an emphasis on their relevance in neurodegenerative diseases.

3.
Neurobiol Dis ; 136: 104742, 2020 03.
Artículo en Inglés | MEDLINE | ID: mdl-31931141

RESUMEN

The Apolipoprotein E (APOE) gene is a major genetic risk factor associated with Alzheimer's disease (AD). APOE encodes for three main isoforms in humans (E2, E3, and E4). Homozygous E4 individuals have more than a 10-fold higher risk for developing late-onset AD, while E2 carriers are protected. A hallmark of AD is a reduction in cerebral glucose metabolism, alluding to a strong metabolic component in disease onset and progression. Interestingly, E4 individuals display a similar regional pattern of cerebral glucose hypometabolism decades prior to disease onset. Mapping this metabolic landscape may help elucidate the underlying biological mechanism of APOE-associated risk for AD. Efficient metabolic coupling of neurons and glia is necessary for proper neuronal function, and disruption in glial energy distribution has been proposed to contribute to neuronal cell death and AD pathology. One important function of astrocytes - canonically the primary source of apolipoprotein E in the brain - is to provide metabolic substrates (lactate, lipids, amino acids and neurotransmitters) to neurons. Here we investigate the effects of APOE on astrocyte glucose metabolism in vitro utilizing scintillation proximity assays, stable isotope tracer metabolomics, and gene expression analyses. Glucose uptake is impaired in E4 astrocytes relative to E2 or E3 with specific alterations in central carbon metabolism. Using stable isotope labeled glucose [U-13C] allowed analyses of astrocyte-specific deep metabolic networks affected by APOE, and provided insight to the effects downstream of glucose uptake. Enrichment of 13C in early steps of glycolysis was lowest in E4 astrocytes (highest in E2), while synthesis of lactate from glucose was highest in E4 astrocytes (lowest in E2). We observed an increase in glucose flux through the pentose phosphate pathway (PPP), with downstream increases in gluconeogenesis, lipid, and de novo nucleotide biosynthesis in E4 astrocytes. There was also a marked increase in 13C enrichment in the TCA cycle of E4 astrocytes - whose substrates were also incorporated into biosynthetic pathways at a higher rate. Pyruvate carboxylase (PC) and pyruvate dehydrogenase (PDH) are the two main enzymes controlling pyruvate entry to the TCA cycle. PC gene expression is increased in E4 astrocytes and the activity relative to PDH was also increased, compared to E2 or E3. Decreased enrichment in the TCA cycle of E2 and E3 astrocytes is suggestive of increased oxidation and non-glucose derived anaplerosis, which could be fueling mitochondrial ATP production. Conversely, E4 astrocytes appear to increase carbon flux into the TCA cycle to fuel cataplerosis. Together, these data demonstrate clear APOE isoform-specific effects on glucose utilization in astrocytes, including E4-associated increases in lactate synthesis, PPP flux, and de novo biosynthesis pathways.


Asunto(s)
Apolipoproteína E4/metabolismo , Astrocitos/metabolismo , Isótopos de Carbono/metabolismo , Glucosa/metabolismo , Animales , Apolipoproteína E4/genética , Astrocitos/química , Isótopos de Carbono/análisis , Línea Celular Transformada , Cromatografía por Intercambio Iónico/métodos , Glucosa/análisis , Humanos , Ratones
4.
Nephrol Dial Transplant ; 34(12): 2042-2050, 2019 12 01.
Artículo en Inglés | MEDLINE | ID: mdl-31071225

RESUMEN

BACKGROUND: Plasminogen activator inhibitor-1 (PAI-1) expression increases extracellular matrix deposition and contributes to interstitial fibrosis in the kidney after injury. While PAI-1 is ubiquitously expressed in the kidney, we hypothesized that interstitial fibrosis is strongly dependent on fibroblast-specific PAI-1 (fbPAI-1). METHODS: Tenascin C Cre (TNC Cre) and fbPAI-1 knockdown (KD) mice with green fluorescent protein (GFP) expressed within the TNC construct underwent unilateral ureteral obstruction and were sacrificed 10 days later. RESULTS: GFP+ cells in fbPAI-1 KD mice showed significantly reduced PAI-1 expression. Interstitial fibrosis, measured by Sirius red staining and collagen I western blot, was significantly decreased in fbPAI-1 KD compared with TNC Cre mice. There was no significant difference in transforming growth factor ß (TGF-ß) expression or its activation between the two groups. However, GFP+ cells from fbPAI-1 KD mice had lower TGF ß and connective tissue growth factor (CTGF) expression. The number of fibroblasts was decreased in fbPAI-1 KD compared with TNC Cre mice, correlating with decreased alpha smooth muscle actin (α-SMA) expression and less fibroblast cell proliferation. TNC Cre mice had decreased E-cadherin, a marker of differentiated tubular epithelium, in contrast to preserved expression in fbPAI-1 KD. F4/80-expressing cells, mostly CD11c+/F4/80+ cells, were increased while M1 macrophage markers were decreased in fbPAI-1 KD compared with TNC Cre mice. CONCLUSION: These findings indicate that fbPAI-1 depletion ameliorates interstitial fibrosis by decreasing fibroblast proliferation in the renal interstitium, with resulting decreased collagen I. This is linked to decreased M1 macrophages and preserved tubular epithelium.


Asunto(s)
Fibroblastos/metabolismo , Fibrosis/prevención & control , Enfermedades Renales/prevención & control , Serpina E2/fisiología , Obstrucción Ureteral/complicaciones , Actinas/metabolismo , Animales , Colágeno Tipo I/metabolismo , Factor de Crecimiento del Tejido Conjuntivo/metabolismo , Proteínas de la Matriz Extracelular/metabolismo , Fibrosis/etiología , Fibrosis/metabolismo , Enfermedades Renales/etiología , Enfermedades Renales/metabolismo , Ratones , Ratones Noqueados , Proteínas del Tejido Nervioso/metabolismo , Factor de Crecimiento Transformador beta/metabolismo , Obstrucción Ureteral/metabolismo
5.
Cells ; 8(2)2019 02 20.
Artículo en Inglés | MEDLINE | ID: mdl-30791549

RESUMEN

Lipid droplets (LDs) serve as energy rich reservoirs and have been associated with apolipoprotein E (APOE) and neurodegeneration. The E4 allele of APOE (E4) is the strongest genetic risk factor for the development of late onset Alzheimer's disease (AD). Since both E4 carriers and individuals with AD exhibit a state of cerebral lipid dyshomeostasis, we hypothesized that APOE may play a role in regulating LD metabolism. We found that astrocytes expressing E4 accumulate significantly more and smaller LDs compared to E3 astrocytes. Accordingly, expression of perilipin-2, an essential LD protein component, was higher in E4 astrocytes. We then probed fatty acid (FA) metabolism and found E4 astrocytes to exhibit decreased uptake of palmitate, and decreased oxidation of exogenously supplied oleate and palmitate. We then measured oxygen consumption rate, and found E4 astrocytes to consume more oxygen for endogenous FA oxidation and accumulate more LD-derived metabolites due to incomplete oxidation. Lastly, we found that E4 astrocytes are more sensitive to carnitine palmitoyltransferase-1 inhibition than E3 astrocytes. These findings offer the potential for further studies investigating the link between astrocyte lipid storage, utilization, and neurodegenerative disease as a function of APOE genotype.


Asunto(s)
Apolipoproteína E4/metabolismo , Astrocitos/metabolismo , Ácidos Grasos/metabolismo , Gotas Lipídicas/metabolismo , Animales , Carnitina O-Palmitoiltransferasa/metabolismo , Humanos , Ratones , Ácido Oléico/metabolismo , Oxidación-Reducción , Ácido Palmítico/metabolismo
6.
Curr Opin Lipidol ; 30(1): 10-15, 2019 02.
Artículo en Inglés | MEDLINE | ID: mdl-30550413

RESUMEN

PURPOSE OF REVIEW: Various groups have explored the effect of apolipoprotein E (APOE) on neurodegeneration through nutritional and metabolic alterations. In this review, we hope to summarize recent findings in humans as well as preclinical APOE models. RECENT FINDINGS: Metabolic pathways including lipid metabolism appear to play a large role in the pathophysiology of Alzheimer's disease. Carrier status of the E4 variant of the APOE gene is the strongest genetic risk factor for Alzheimer's disease, and increasing evidence suggests that E4 carriers may respond differently to a host of dietary and metabolic-related treatments. A new appreciation is forming for the role of APOE in cerebral metabolism, and how nutritional factors may impact this role. SUMMARY: Considering the role dietary factors play in APOE-associated cognitive decline will help us to understand how nutritional interventions may facilitate or mitigate disease progression.


Asunto(s)
Apolipoproteínas E/metabolismo , Demencia/metabolismo , Nutrientes/metabolismo , Animales , Encéfalo/metabolismo , Dieta , Humanos
7.
Front Aging Neurosci ; 10: 180, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-29962946

RESUMEN

Apolipoprotein E4 (ApoE4) is the strongest genetic risk factor for late onset Alzheimer's Disease (AD), and is associated with impairments in cerebral metabolism and cerebrovascular function. A substantial body of literature now points to E4 as a driver of multiple impairments seen in AD, including blunted brain insulin signaling, mismanagement of brain cholesterol and fatty acids, reductions in blood brain barrier (BBB) integrity, and decreased cerebral glucose uptake. Various neuroimaging techniques, in particular positron emission topography (PET) and magnetic resonance imaging (MRI), have been instrumental in characterizing these metabolic and vascular deficits associated with this important AD risk factor. In the current mini-review article, we summarize the known effects of APOE on cerebral metabolism and cerebrovascular function, with a special emphasis on recent findings via neuroimaging approaches.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...