Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 25
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Front Immunol ; 14: 1093212, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36923406

RESUMEN

Cystic fibrosis (CF) is a rare autosomal recessive disease caused by mutations in the cystic fibrosis transmembrane conductance regulator (CFTR) gene. The most common mutation is F508del-CFTR (ΔF) which leads the encoded ion channel towards misfolding and premature degradation. The disease is characterized by chronic bronchopulmonary obstruction, inflammation and airways colonization by bacteria, which are the major cause of morbidity and mortality. The STING pathway is the main signaling route activated in the presence of both self and pathogen DNA, leading to Type I Interferon (IFN I) production and the innate immune response. In this study, we show for the first time the relationship existing in CF between resistant and recurrent opportunistic infections by Pseudomonas aeruginosa and the innate immunity impairment. We demonstrate through ex vivo and in vivo experiments that the pathway is inadequately activated in ΔF condition and the use of direct STING agonists, as 2',3'-cyclic GMP-AMP (2', 3' cGAMP), is able to restore the immune response against bacterial colonization. Indeed, upon treatment with the STING pathway agonists, we found a reduction of colony forming units (CFUs) consequent to IFN-ß enhanced production in Pseudomonas aeruginosa infected bone marrow derived macrophages and lung tissues from mice affected by Cystic Fibrosis. Importantly, we also verified that the impairment detected in the primary PBMCs obtained from ΔF patients can be corrected by 2', 3' cGAMP. Our work indicates that the cGAS/STING pathway integrity is crucial in the Cystic Fibrosis response against pathogens and that the restoration of the pathway by 2', 3' cGAMP could be exploited as a possible new target for the symptomatic treatment of the disease.


Asunto(s)
Fibrosis Quística , Interferón Tipo I , Ratones , Animales , Fibrosis Quística/microbiología , Regulador de Conductancia de Transmembrana de Fibrosis Quística , Inmunidad Innata/genética , Interferón Tipo I/metabolismo , Macrófagos , Proteínas Serina-Treonina Quinasas/metabolismo , Factor 3 Regulador del Interferón/genética , Factor 3 Regulador del Interferón/metabolismo
2.
J Immunol ; 206(10): 2420-2429, 2021 05 15.
Artículo en Inglés | MEDLINE | ID: mdl-33941660

RESUMEN

We have recently shown that type 2 transglutaminase (TG2) plays a key role in the host's inflammatory response during bacterial infections. In this study, we investigated whether the enzyme is involved in the regulation of the STING pathway, which is the main signaling activated in the presence of both self- and pathogen DNA in the cytoplasm, leading to type I IFN (IFN I) production. In this study, we demonstrated that TG2 negatively regulates STING signaling by impairing IRF3 phosphorylation in bone marrow-derived macrophages, isolated from wild-type and TG2 knockout mice. In the absence of TG2, we found an increase in the IFN-ß production and in the downstream JAK/STAT pathway activation. Interestingly, proteomic analysis revealed that TG2 interacts with TBK1, affecting its interactome composition. Indeed, TG2 ablation facilitates the TBK1-IRF3 interaction, thus indicating that the enzyme plays a negative regulatory effect on IRF3 recruitment in the STING/TBK1 complex. In keeping with these findings, we observed an increase in the IFNß production in bronchoalveolar lavage fluids from COVID-19-positive dead patients paralleled by a dramatic decrease of the TG2 expression in the lung pneumocytes. Taken together, these results suggest that TG2 plays a negative regulation on the IFN-ß production associated with the innate immunity response to the cytosolic presence of both self- and pathogen DNA.


Asunto(s)
COVID-19/inmunología , Proteínas de Unión al GTP/inmunología , Inmunidad Innata , Factor 3 Regulador del Interferón/inmunología , Proteínas de la Membrana/inmunología , Proteínas Serina-Treonina Quinasas/inmunología , SARS-CoV-2/inmunología , Transducción de Señal/inmunología , Transglutaminasas/inmunología , Animales , COVID-19/genética , COVID-19/patología , Proteínas de Unión al GTP/genética , Humanos , Factor 3 Regulador del Interferón/genética , Interferón beta/genética , Interferón beta/inmunología , Proteínas de la Membrana/genética , Ratones , Ratones Noqueados , Proteína Glutamina Gamma Glutamiltransferasa 2 , Proteínas Serina-Treonina Quinasas/genética , Transducción de Señal/genética , Transglutaminasas/genética
3.
Cell Death Dis ; 12(3): 249, 2021 03 05.
Artículo en Inglés | MEDLINE | ID: mdl-33674551

RESUMEN

TG2 is a multifunctional enzyme involved in several cellular processes and has emerging as a potential regulator of gene expression. In this regard, we have recently shown that TG2 is able to activate HSF1, the master transcriptional regulator of the stress-responsive genes; however, its effect on the overall gene expression remains unclear. To address this point, we analyzed, by RNA-seq, the effect of TG2 on the overall transcriptome as well as we characterized the TG2 interactome in the nucleus. The data obtained from these omics approaches reveal that TG2 markedly influences the overall cellular transcriptome profile and specifically the Wnt and HSF1 pathways. In particular, its ablation leads to a drastic downregulation of many key members of these pathways. Interestingly, we found that key components of the Wnt/ß-catenin pathway are also downregulated in cells lacking HSF1, thus confirming that TG2 regulates the HSF1 and this axis controls the Wnt signaling. Mechanistic studies revealed that TG2 can regulate the Wnt pathway by physically interacts with ß-catenin and its nuclear interactome includes several proteins known to be involved in the regulation of the Wnt signaling. In order to verify whether this effect is playing a role in vivo, we ablated TG2 in Danio rerio. Our data show that the zebrafish lacking TG2 cannot complete the development and their death is associated with an evident downregulation of the Wnt pathway and a defective heat-shock response. Our findings show for the first time that TG2 is essential for the correct embryonal development of lower vertebrates, and its action is mediated by the Wnt/HSF1 axis.


Asunto(s)
Fibroblastos/enzimología , Proteínas de Unión al GTP/metabolismo , Factores de Transcripción del Choque Térmico/metabolismo , Transglutaminasas/metabolismo , Vía de Señalización Wnt , Pez Cebra/metabolismo , Animales , Células Cultivadas , Proteínas de Unión al GTP/genética , Regulación del Desarrollo de la Expresión Génica , Factores de Transcripción del Choque Térmico/genética , Respuesta al Choque Térmico , Ratones Endogámicos C57BL , Ratones Noqueados , Proteína Glutamina Gamma Glutamiltransferasa 2 , Transcripción Genética , Transcriptoma , Transglutaminasas/genética , Proteínas Wnt/genética , Proteínas Wnt/metabolismo , Pez Cebra/embriología , Pez Cebra/genética , Proteínas de Pez Cebra/genética , Proteínas de Pez Cebra/metabolismo , beta Catenina/genética , beta Catenina/metabolismo
4.
Biol Chem ; 400(2): 125-140, 2019 01 28.
Artículo en Inglés | MEDLINE | ID: mdl-29908126

RESUMEN

The maintenance of protein homeostasis (proteostasis) is a fundamental aspect of cell physiology that is essential for the survival of organisms under a variety of environmental and/or intracellular stress conditions. Acute and/or persistent stress exceeding the capacity of the intracellular homeostatic systems results in protein aggregation and/or damaged organelles that leads to pathological cellular states often resulting in cell death. These events are continuously suppressed by a complex macromolecular machinery that uses different intracellular pathways to maintain the proteome integrity in the various subcellular compartments ensuring a healthy cellular life span. Recent findings have highlighted the role of the multifunctional enzyme type 2 transglutaminase (TG2) as a key player in the regulation of intracellular pathways, such as autophagy/mitophagy, exosomes formation and chaperones function, which form the basis of proteostasis regulation under conditions of cellular stress. Here, we review the role of TG2 in these stress response pathways and how its various enzymatic activities might contributes to the proteostasis control.


Asunto(s)
Proteínas de Unión al GTP/metabolismo , Proteostasis , Transglutaminasas/metabolismo , Animales , Autofagia , Enfermedad , Exosomas/metabolismo , Humanos , Chaperonas Moleculares/metabolismo , Proteína Glutamina Gamma Glutamiltransferasa 2 , Estrés Fisiológico
5.
Cell Rep ; 25(13): 3573-3581.e4, 2018 12 26.
Artículo en Inglés | MEDLINE | ID: mdl-30590033

RESUMEN

Transglutaminase type 2 (TG2) is a multifunctional enzyme that plays a key role in mitochondria homeostasis under stressful cellular conditions. TG2 interactome analysis reveals an enzyme interaction with GRP75 (glucose-regulated protein 75). GRP75 localizes in mitochondria-associated membranes (MAMs) and acts as a bridging molecule between the two organelles by assembling the IP3R-GRP75-VDAC complex, which is involved in the transport of Ca2+ from the endoplasmic reticulum (ER) to mitochondria. We demonstrate that the TG2 and GRP75 interaction occurs in MAMs. The absence of the TG2-GRP75 interaction leads to an increase of the interaction between IP3R-3 and GRP75; a decrease of the number of ER-mitochondria contact sites; an impairment of the ER-mitochondrial Ca2+ flux; and an altered profile of the MAM proteome. These findings indicate TG2 is a key regulatory element of the MAMs.


Asunto(s)
Retículo Endoplásmico/metabolismo , Proteínas de Unión al GTP/metabolismo , Proteínas HSP70 de Choque Térmico/metabolismo , Proteínas de la Membrana/metabolismo , Mitocondrias/metabolismo , Transglutaminasas/metabolismo , Animales , Calcio/metabolismo , Retículo Endoplásmico/ultraestructura , Fibroblastos/metabolismo , Células HEK293 , Humanos , Receptores de Inositol 1,4,5-Trifosfato/metabolismo , Ratones Endogámicos C57BL , Mitocondrias/ultraestructura , Membranas Mitocondriales/metabolismo , Proteínas Mitocondriales/metabolismo , Unión Proteica , Proteína Glutamina Gamma Glutamiltransferasa 2
6.
EMBO Rep ; 19(7)2018 07.
Artículo en Inglés | MEDLINE | ID: mdl-29752334

RESUMEN

Heat-shock factor 1 (HSF1) is the master transcription factor that regulates the response to proteotoxic stress by controlling the transcription of many stress-responsive genes including the heat-shock proteins. Here, we show a novel molecular mechanism controlling the activation of HSF1. We demonstrate that transglutaminase type 2 (TG2), dependent on its protein disulphide isomerase activity, triggers the trimerization and activation of HSF1 regulating adaptation to stress and proteostasis impairment. In particular, we find that TG2 loss of function correlates with a defect in the nuclear translocation of HSF1 and in its DNA-binding ability to the HSP70 promoter. We show that the inhibition of TG2 restores the unbalance in HSF1-HSP70 pathway in cystic fibrosis (CF), a human disorder characterized by deregulation of proteostasis. The absence of TG2 leads to an increase of about 40% in CFTR function in a new experimental CF mouse model lacking TG2. Altogether, these results indicate that TG2 plays a key role in the regulation of cellular proteostasis under stressful cellular conditions through the modulation of the heat-shock response.


Asunto(s)
Fibrosis Quística/genética , Proteínas de Unión al ADN/genética , Proteínas de Unión al GTP/genética , Factores de Transcripción del Choque Térmico/genética , Transglutaminasas/genética , Animales , Fibrosis Quística/patología , Regulación de la Expresión Génica , Respuesta al Choque Térmico/genética , Humanos , Ratones , Regiones Promotoras Genéticas , Unión Proteica , Proteína Disulfuro Isomerasas/genética , Proteína Glutamina Gamma Glutamiltransferasa 2 , Procesamiento Proteico-Postraduccional/genética , Proteostasis/genética , Transducción de Señal
7.
Biochim Biophys Acta ; 1863(8): 2084-92, 2016 08.
Artículo en Inglés | MEDLINE | ID: mdl-27169926

RESUMEN

Numerous studies are revealing a role of exosomes in intercellular communication, and growing evidence indicates an important function for these vesicles in the progression and pathogenesis of cancer and neurodegenerative diseases. However, the biogenesis process of exosomes is still unclear. Tissue transglutaminase (TG2) is a multifunctional enzyme with different subcellular localizations. Particularly, under stressful conditions, the enzyme has been also detected in the extracellular matrix, but the mechanism(s) by which TG2 is released outside the cells requires further investigation. Therefore, the goal of the present study was to determine whether exosomes might be a vehicle for TG2 to reach the extracellular space, and whether TG2 could be involved in exosomes biogenesis. To address this issue, we isolated and characterized exosomes derived from cells either expressing or not TG2, under stressful conditions (i.e. proteasome impairment or expressing a mutated form of huntingtin (mHtt) containing 84 polyglutamine repeats). Our results show that TG2 is present in the exosomes only upon proteasome blockade, a condition in which TG2 interacts with TSG101 and ALIX, two key proteins involved in exosome biogenesis. Interestingly, we found that TG2 favours the assembly of a protein complex including mHtt, ALIX, TSG101 and BAG3, a co-chaperone involved in the clearance of mHtt. The formation of this complex is paralleled by the selective recruitment of mHtt and BAG3 in the exosomes derived from TG2 proficient cells only. Overall, our data indicate that TG2 is an important player in the biogenesis of exosomes controlling the selectivity of their cargo under stressful cellular conditions. In addition, these vesicles represent the way by which cells can release TG2 into the extracellular space under proteostasis impairment.


Asunto(s)
Inhibidores de Cisteína Proteinasa/farmacología , Complejos de Clasificación Endosomal Requeridos para el Transporte/fisiología , Exosomas/metabolismo , Proteínas de Unión al GTP/fisiología , Leupeptinas/farmacología , Transporte de Proteínas/fisiología , Estrés Fisiológico/fisiología , Transglutaminasas/fisiología , Proteínas Adaptadoras Transductoras de Señales/fisiología , Animales , Proteínas Reguladoras de la Apoptosis/fisiología , Proteínas de Unión al Calcio/metabolismo , Proteínas de Ciclo Celular/metabolismo , Células Cultivadas , Proteínas de Unión al ADN/metabolismo , Complejos de Clasificación Endosomal Requeridos para el Transporte/metabolismo , Fibroblastos , Proteínas de Unión al GTP/deficiencia , Proteínas de Unión al GTP/genética , Técnicas de Inactivación de Genes , Células HEK293 , Humanos , Proteína Huntingtina/genética , Proteína Huntingtina/metabolismo , Ratones , Mutación , Complejo de la Endopetidasa Proteasomal/metabolismo , Agregación Patológica de Proteínas/metabolismo , Proteína Glutamina Gamma Glutamiltransferasa 2 , Mapeo de Interacción de Proteínas , Factores de Transcripción/metabolismo , Transglutaminasas/deficiencia , Transglutaminasas/genética , Repeticiones de Trinucleótidos
8.
Oncotarget ; 6(42): 44941-54, 2015 Dec 29.
Artículo en Inglés | MEDLINE | ID: mdl-26702927

RESUMEN

Autophagy is a self-degradative physiological process by which the cell removes worn-out or damaged components. Constant at basal level it may become highly active in response to cellular stress. The type 2 transglutaminase (TG2), which accumulates under stressful cell conditions, plays an important role in the regulation of autophagy and cells lacking this enzyme display impaired autophagy/mitophagy and a consequent shift their metabolism to glycolysis. To further define the molecular partners of TG2 involved in these cellular processes, we analysed the TG2 interactome under normal and starved conditions discovering that TG2 interacts with various proteins belonging to different functional categories. Herein we show that TG2 interacts with pyruvate kinase M2 (PKM2), a rate limiting enzyme of glycolysis which is responsible for maintaining a glycolytic phenotype in malignant cells and displays non metabolic functions, including transcriptional co-activation and protein kinase activity. Interestingly, the ablation of PKM2 led to the decrease of intracellular TG2's transamidating activity paralleled by an increase of its tyrosine phosphorylation. Along with this, a significant decrease of ULK1 and Beclin1 was also recorded, thus suggesting a block in the upstream regulation of autophagosome formation. These data suggest that the PKM2/TG2 interplay plays an important role in the regulation of autophagy in particular under cellular stressful conditions such as those displayed by cancer cells.


Asunto(s)
Autofagia , Proteínas Portadoras/metabolismo , Fibrosarcoma/enzimología , Proteínas de Unión al GTP/metabolismo , Proteínas de la Membrana/metabolismo , Hormonas Tiroideas/metabolismo , Transglutaminasas/metabolismo , Proteínas Reguladoras de la Apoptosis/metabolismo , Homólogo de la Proteína 1 Relacionada con la Autofagia , Beclina-1 , Proteínas Portadoras/genética , Línea Celular Tumoral , Fibrosarcoma/patología , Proteínas de Unión al GTP/genética , Regulación Enzimológica de la Expresión Génica , Regulación Neoplásica de la Expresión Génica , Humanos , Péptidos y Proteínas de Señalización Intracelular/metabolismo , Proteínas de la Membrana/genética , Fosforilación , Proteína Glutamina Gamma Glutamiltransferasa 2 , Mapas de Interacción de Proteínas , Proteínas Serina-Treonina Quinasas/metabolismo , Interferencia de ARN , Transducción de Señal , Hormonas Tiroideas/genética , Transfección , Transglutaminasas/genética , Tirosina , Proteínas de Unión a Hormona Tiroide
9.
Mitochondrion ; 19 Pt A: 97-104, 2014 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-25262960

RESUMEN

Mitochondria produce the bulk of cellular energy and work as decisional "hubs" for cellular responses by integrating different input signals. The determinant in the physiopathology of mammals, they attract major attention, nowadays, for their contribution to brain degeneration. How they can withstand or succumb to insults leading to neuronal death is an object of great attention increasing the need for a better understanding of the interplay between inner and outer mitochondrial pathways residing in the cytosol. Of the latter, those dictating protein metabolism and therefore influencing the quality function and control of the organelle are of our most immediate interest and here we describe the Transglutaminase type 2 (TG2) contribution to mitochondrial function, dysfunction and neurodegeneration. Besides reviewing the latest evidences we share also the novel ones on the IF1 pathway depicting a molecular conduit governing mitochondrial turnover and homeostasis relevant to envisaging preventive and therapeutic strategies to respectively predict and counteract deficiencies associated with deregulated mitochondrial function in neuropathology.


Asunto(s)
Proteínas de Unión al GTP/metabolismo , Enfermedad de Huntington/metabolismo , Mitocondrias/metabolismo , Transglutaminasas/metabolismo , Metabolismo Energético , Proteínas de Unión al GTP/genética , Regulación Enzimológica de la Expresión Génica , Humanos , Enfermedad de Huntington/genética , Proteína Glutamina Gamma Glutamiltransferasa 2 , Transglutaminasas/genética
10.
Cell Tissue Res ; 358(3): 793-805, 2014 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-25209703

RESUMEN

Transglutaminase type II (TG2) is a pleiotropic enzyme that exhibits various activities unrelated to its originally identified functions. Apart from post-translational modifications of proteins (peculiar to the transglutaminase family enzymes), TG2 is involved in diverse biological functions, including cell death, signaling, cytoskeleton rearrangements, displaying enzymatic activities, G-protein and non-enzymatic biological functions. It is involved in a variety of human diseases such as celiac disease, diabetes, neurodegenerative diseases, inflammatory disorders and cancer. Regulatory mechanisms might exist through which cells control multifunctional protein expression as a function of their sub-cellular localization. The definition of the tissue and cellular distribution of such proteins is important for the determination of their function(s). We investigate the sub-cellular localization of TG2 by confocal and immunoelectron microscopy techniques in order to gain an understanding of its properties. The culture conditions of human sarcoma cells (2fTGH cells), human embryonic kidney cells (HEK293(TG)) and human neuroblastoma cells (SK-n-BE(2)) are modulated to induce various stimuli. Human tissue samples of myocardium and gut mucosa (diseased and healthy) are also analyzed. Immuno-gold labeling indicates that TG2 is localized in the nucleus, mitochondria and endoplasmic reticulum under physiological conditions but that this is not a stable association, since different locations or different amounts of TG2 can be observed depending on stress stimuli or the state of activity of the cell. We describe a possible unrecognized location of TG2. Our findings thus provide useful insights regarding the functions and regulation of this pleiotropic enzyme.


Asunto(s)
Proteínas de Unión al GTP/metabolismo , Espacio Intracelular/enzimología , Transglutaminasas/metabolismo , Línea Celular Tumoral , Membrana Celular/efectos de los fármacos , Membrana Celular/metabolismo , Núcleo Celular/efectos de los fármacos , Núcleo Celular/metabolismo , Núcleo Celular/ultraestructura , Doxorrubicina/farmacología , Espacio Extracelular/efectos de los fármacos , Espacio Extracelular/metabolismo , Proteínas de Unión al GTP/ultraestructura , Células HEK293 , Humanos , Mucosa Intestinal/patología , Mucosa Intestinal/ultraestructura , Espacio Intracelular/efectos de los fármacos , Modelos Biológicos , Miofibrillas/efectos de los fármacos , Miofibrillas/metabolismo , Miofibrillas/ultraestructura , Neuroblastoma/patología , Neuroblastoma/ultraestructura , Proteína Glutamina Gamma Glutamiltransferasa 2 , Transporte de Proteínas/efectos de los fármacos , Estrés Fisiológico/efectos de los fármacos , Fracciones Subcelulares/efectos de los fármacos , Fracciones Subcelulares/enzimología , Transglutaminasas/ultraestructura
11.
Mol Cell Oncol ; 1(4): e968506, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-27308365

RESUMEN

Macroautophagy selectively degrades dysfunctional mitochondria by a process known as mitophagy. The purpose of the study published in Cell Death and Differentiation was to investigate the involvement of transglutaminase 2 (TG2) in the turnover and degradation of damaged mitochondria and its effects on cell metabolism.

12.
Amino Acids ; 42(5): 1793-802, 2012 May.
Artículo en Inglés | MEDLINE | ID: mdl-21479826

RESUMEN

Tissue transglutaminase (TG2) activity has been implicated in inflammatory disease processes such as Celiac disease, infectious diseases, cancer, and neurodegenerative diseases, such as Huntington's disease. Furthermore, four distinct biochemical activities have been described for TG2 including protein crosslinking via transamidation, GTPase, kinase and protein disulfide isomerase activities. Although the enzyme plays a complex role in the regulation of cell death and autophagy, the molecular mechanisms and the putative biochemical activity involved in each is unclear. Therefore, the goal of the present study was to determine how TG2 modulates autophagy and/or apoptosis and which of its biochemical activities is involved in those processes. To address this question, immortalized embryonic fibroblasts obtained from TG2 knock-out mice were reconstituted with either wild-type TG2 or TG2 lacking its transamidating activity and these were subjected to different treatments to induce autophagy or apoptosis. We found that knock out of the endogenous TG2 resulted in a significant exacerbation of caspase 3 activity and PARP cleavage in MEF cells subjected to apoptotic stimuli. Interestingly, the same cells showed the accumulation of LC3 II isoform following autophagy induction. These findings strongly suggest that TG2 transamidating activity plays a protective role in the response of MEF cells to death stimuli, because the expression of the wild-type TG2, but not its transamidation inactive C277S mutant, resulted in a suppression of caspase 3 as well as PARP cleavage upon apoptosis induction. Additionally, the same mutant was unable to catalyze the final steps in autophagosome formation during autophagy. Our findings clearly indicate that the TG2 transamidating activity is the primary biochemical function involved in the physiological regulation of both apoptosis and autophagy. These data also indicate that TG2 is a key regulator of cross-talk between autophagy and apoptosis.


Asunto(s)
Apoptosis , Autofagia , Transglutaminasas/genética , Transglutaminasas/metabolismo , Animales , Apoptosis/genética , Autofagia/genética , Caspasa 3/metabolismo , Células Cultivadas , Fibroblastos/citología , Fibroblastos/metabolismo , Expresión Génica , Ratones , Ratones Noqueados , Proteínas Asociadas a Microtúbulos/metabolismo , Proteínas Mutantes/genética , Poli(ADP-Ribosa) Polimerasa-1 , Poli(ADP-Ribosa) Polimerasas/metabolismo , Transfección
13.
Biochem J ; 440(2): 175-83, 2011 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-21834791

RESUMEN

Acquired drug resistance was found to be suppressed in the doxorubicin-resistant breast cancer cell line MCF7/Dx after pre-treatment with GSNO (nitrosoglutathione). The effect was accompanied by enhanced protein glutathionylation and accumulation of doxorubicin in the nucleus. Among the glutathionylated proteins, we identified three members of the histone family; this is, to our knowledge, the first time that histone glutathionylation has been reported. Formation of the potential NO donor dinitrosyl-diglutathionyl-iron complex, bound to GSTP1-1 (glutathione transferase P1-1), was observed in both MCF7/Dx cells and drug-sensitive MCF7 cells to a similar extent. In contrast, histone glutathionylation was found to be markedly increased in the resistant MCF7/Dx cells, which also showed a 14-fold higher amount of GSTP1-1 and increased glutathione concentration compared with MCF7 cells. These results suggest that the increased cytotoxic effect of combined doxorubicin and GSNO treatment involves the glutathionylation of histones through a mechanism that requires high glutathione levels and increased expression of GSTP1-1. Owing to the critical role of histones in the regulation of gene expression, the implication of this finding may go beyond the phenomenon of doxorubicin resistance.


Asunto(s)
Doxorrubicina/farmacología , Resistencia a Antineoplásicos/efectos de los fármacos , Glutatión/metabolismo , Histonas/metabolismo , Óxido Nítrico/farmacología , Neoplasias de la Mama/tratamiento farmacológico , Complejos de Coordinación/metabolismo , Femenino , Gutatión-S-Transferasa pi/metabolismo , Humanos , S-Nitrosoglutatión/farmacología
15.
Autophagy ; 5(8): 1145-54, 2009 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-19955852

RESUMEN

Autophagy is a highly conserved cellular process responsible for the degradation of long-lived proteins and organelles. Autophagy occurs at low levels under normal conditions, but it is enhanced in response to stress, e.g. nutrient deprivation, hypoxia, mitochondrial dysfunction and infection. "Tissue" transglutaminase (TG2) accumulates, both in vivo and in vitro, to high levels in cells under stressful conditions. Therefore, in this study, we investigated whether TG2 could also play a role in the autophagic process. To this end, we used TG2 knockout mice and cell lines in which the enzyme was either absent or overexpressed. The ablation of TG2 protein both in vivo and in vitro, resulted in an evident accumulation of microtubule-associated protein 1 light chain 3 cleaved isoform II (LC3 II) on pre-autophagic vesicles, suggesting a marked induction of autophagy. By contrast, the formation of the acidic vesicular organelles in the same cells was very limited, indicating an impairment of the final maturation of autophagolysosomes. In fact, the treatment of TG2 proficient cells with NH4Cl, to inhibit lysosomal activity, led to a marked accumulation of LC3 II and damaged mitochondria similar to what we observed in TG2-deficient cells. These data indicate a role for TG2-mediated post-translational modifications of proteins in the maturation of autophagosomes accompanied by the accumulation of many damaged mitochondria.


Asunto(s)
Autofagia , Proteínas de Unión al GTP/metabolismo , Fagosomas/enzimología , Transglutaminasas/metabolismo , Animales , Autofagia/efectos de los fármacos , Reactivos de Enlaces Cruzados/farmacología , Embrión de Mamíferos/citología , Fibroblastos/citología , Fibroblastos/efectos de los fármacos , Fibroblastos/enzimología , Fibroblastos/ultraestructura , Citometría de Flujo , Técnica del Anticuerpo Fluorescente , Proteínas de Unión al GTP/deficiencia , Técnicas de Inactivación de Genes , Humanos , Lisosomas/efectos de los fármacos , Lisosomas/ultraestructura , Fusión de Membrana/efectos de los fármacos , Ratones , Proteínas Asociadas a Microtúbulos/metabolismo , Miocardio/citología , Miocardio/ultraestructura , Proteína Glutamina Gamma Glutamiltransferasa 2 , Vesículas Secretoras/efectos de los fármacos , Vesículas Secretoras/metabolismo , Vesículas Secretoras/ultraestructura , Coloración y Etiquetado , Transglutaminasas/deficiencia
16.
J Immunol ; 180(4): 2616-24, 2008 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-18250473

RESUMEN

The pathogenesis of sepsis is characterized by the inability of the host to regulate the inflammatory response, and as a consequence, dysregulated inflammatory processes induce organ dysfunctions and death. Altered transglutaminase type II (TG2) expression is associated with the development of many inflammatory diseases. Therefore, in this study, we questioned whether TG2 could also contribute to the pathological inflammatory dysregulation occurring in septic shock in vivo. To this aim, we used as an experimental model the TG2 knockout mice, in which the process of septic shock was elicited by treatment with LPS. Interestingly, our results demonstrated that TG2 ablation leads to partial resistance to experimental sepsis. The increased survival of TG2(-/-) mice was reflected in a drastic reduction of organ injury, highlighted by a limited infiltration of neutrophils in kidney and peritoneum and by a better homeostasis of the proinflammatory mediators as well as mitochondrial function. We also showed that in wild-type mice, the TG2 expression is increased during endotoxemia and, being directly involved in the mechanisms of NF-kappaB activation, it may cause a continuous activation cycle in the inflammatory process, thus contributing to development of sepsis pathogenesis. We propose that the inhibition of TG2 could represent a novel approach in the treatment of inflammatory processes associated with sepsis.


Asunto(s)
Proteínas de Unión al GTP/fisiología , Choque Séptico/enzimología , Choque Séptico/etiología , Transglutaminasas/fisiología , Lesión Renal Aguda/enzimología , Lesión Renal Aguda/patología , Animales , Endotoxemia/enzimología , Endotoxemia/etiología , Endotoxemia/mortalidad , Endotoxemia/patología , Infecciones por Escherichia coli/enzimología , Infecciones por Escherichia coli/mortalidad , Infecciones por Escherichia coli/patología , Femenino , Proteínas de Unión al GTP/biosíntesis , Proteínas de Unión al GTP/deficiencia , Proteínas de Unión al GTP/genética , Mediadores de Inflamación/metabolismo , Mediadores de Inflamación/fisiología , Lipopolisacáridos/toxicidad , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Miocardio/enzimología , Miocardio/patología , Miocardio/ultraestructura , Proteína Glutamina Gamma Glutamiltransferasa 2 , Choque Séptico/mortalidad , Choque Séptico/patología , Análisis de Supervivencia , Transglutaminasas/biosíntesis , Transglutaminasas/deficiencia , Transglutaminasas/genética
17.
Curr Pharm Des ; 14(3): 278-88, 2008.
Artículo en Inglés | MEDLINE | ID: mdl-18220838

RESUMEN

"Tissue" or type 2 Transglutaminase (TG2) is a peculiar multifunctional enzyme able to catalyse Ca(2+)-dependent post-translational modification of proteins, by establishing covalent bonds between peptide-bound glutamine residues and either lysine residues or mono- and poly-amines. In addition, it may act also as a G protein in transmembrane signalling, as a kinase, as a protein disulphide isomerase and as a cell surface adhesion mediator. The vast array of biochemical functions exerted by TG2 characterises and distinguishes it from all the other members of the transglutaminase family. Multiple lines of evidence suggest an involvement of the enzyme in neurodegenerative diseases, such as Huntington's (HD) and Parkinson (PD), and that its inhibition, either via drug treatments or genetic approaches, might be beneficial for the treatment of these syndromes. This review will exploit the recent developments in the comprehension of the role played by type 2 transglutaminase in eukaryotic cells, focusing on the role exerted by TG2 on mitochondrial physiology and on the regulation of cell death pathways at the basis of neurodegenerative diseases.


Asunto(s)
Células Eucariotas/metabolismo , Proteínas de Unión al GTP/metabolismo , Enfermedades Neurodegenerativas/enzimología , Transglutaminasas/metabolismo , Animales , Autofagia/fisiología , Muerte Celular/fisiología , Supervivencia Celular/fisiología , Sistemas de Liberación de Medicamentos , Regulación Enzimológica de la Expresión Génica/fisiología , Humanos , Mitocondrias/enzimología , Mitocondrias/fisiología , Enfermedades Neurodegenerativas/fisiopatología , Proteína Glutamina Gamma Glutamiltransferasa 2
18.
Autophagy ; 3(1): 75-7, 2007.
Artículo en Inglés | MEDLINE | ID: mdl-17172802

RESUMEN

Several lines of evidence have demonstrated that self-cannibalism (macroautophagy) is a well regulated process of cell repair as well as of molecule and organelle recycling that allows the cells to survive. However, autophagic activity also represents a cell death pathway characterized by specific features that differentiate autophagy from other cell death processes. We found that cells that are able to exert intense autophagic activity were also able to engulf and digest entire cell siblings. This phenomenon represents a sort of xeno-cannibalism. We wonder whether these two phenomena, self and xeno-cannibalism, could be related the latter being an exacerbation of the first and providing a further survival option to the cells.


Asunto(s)
Autofagia/fisiología , Supervivencia Celular/fisiología , Autofagia/genética , Humanos , Modelos Biológicos
19.
J Neurochem ; 100(1): 36-49, 2007 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-17064362

RESUMEN

Transglutaminase 2 (TG2) represents the most ubiquitous isoform belonging to the TG family, and has been implicated in the pathophysiology of basal ganglia disorders, such as Parkinson's disease and Huntington's disease. We show that ablation of TG2 in knockout mice causes a reduced activity of mitochondrial complex I associated with an increased activity of complex II in the whole forebrain and striatum. Interestingly, TG2-/- mice were protected against nigrostriatal damage induced by 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine, which is converted in vivo into the mitochondrial complex I inhibitor, 1-methyl-4-phenyl-pyridinium ion. In contrast, TG2-/- mice were more vulnerable to nigrostriatal damage induced by methamphetamine or by the complex II inhibitor, 3-nitropropionic acid. Proteomic analysis showed that proteins involved in the mitochondrial respiratory chain, such as prohibitin and the beta-chain of ATP synthase, are substrates for TG2. These data suggest that TG2 is involved in the regulation of the respiratory chain both in physiology and pathology, contributing to set the threshold for neuronal damage in extrapyramidal disorders.


Asunto(s)
Enfermedades de los Ganglios Basales/genética , Enfermedades de los Ganglios Basales/fisiopatología , Complejo I de Transporte de Electrón/metabolismo , Proteínas de Unión al GTP/deficiencia , Enfermedades Mitocondriales/patología , Neuronas/patología , Transglutaminasas/deficiencia , 1-Metil-4-fenil-1,2,3,6-Tetrahidropiridina/metabolismo , 1-Metil-4-fenil-1,2,3,6-Tetrahidropiridina/farmacología , Adenosina Trifosfato/metabolismo , Animales , Monoaminas Biogénicas/metabolismo , Western Blotting/métodos , Peso Corporal/efectos de los fármacos , Cuerpo Estriado/efectos de los fármacos , Modelos Animales de Enfermedad , Proteínas de Transporte de Dopamina a través de la Membrana Plasmática/metabolismo , Relación Dosis-Respuesta a Droga , Complejo II de Transporte de Electrones/metabolismo , Proteína Ácida Fibrilar de la Glía/metabolismo , Inmunohistoquímica/métodos , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Mitocondrias/efectos de los fármacos , Mitocondrias/metabolismo , Enfermedades Mitocondriales/etiología , Piperazinas/farmacocinética , Proteína Glutamina Gamma Glutamiltransferasa 2 , Factores de Tiempo , Tirosina 3-Monooxigenasa/metabolismo
20.
Biochim Biophys Acta ; 1757(9-10): 1357-65, 2006.
Artículo en Inglés | MEDLINE | ID: mdl-16979579

RESUMEN

In this study we provide the first in vivo evidences showing that, under physiological conditions, "tissue" transglutaminase (TG2) might acts as a protein disulphide isomerase (PDI) and through this activity contributes to the correct assembly of the respiratory chain complexes. Mice lacking TG2 exhibit mitochondrial energy production impairment, evidenced by decreased ATP levels after physical challenge. This defect is phenotypically reflected in a dramatic decrease of motor behaviour of the animals. We propose that the molecular mechanism, underlying such a phenotype, resides in a defective disulphide bonds formation in ATP synthase (complex V), NADH-ubiquinone oxidoreductase (complex I), succinate-ubiquinone oxidoreductase (complex II) and cytochrome c oxidase (complex IV). In addition, TG2-PDI might control the respiratory chain by modulating the formation of the prohibitin complexes. These data elucidate a new pathway that directly links the TG2-PDI enzymatic activity with the regulation of mitochondrial respiratory chain function.


Asunto(s)
Disulfuros/metabolismo , Proteínas de Unión al GTP/metabolismo , Proteínas Mitocondriales/metabolismo , Transglutaminasas/metabolismo , Adenosina Trifosfato/metabolismo , Animales , Reactivos de Enlaces Cruzados/metabolismo , Transporte de Electrón/fisiología , Electroforesis en Gel de Poliacrilamida , Proteínas de Unión al GTP/deficiencia , Ratones , Ratones Noqueados , Prohibitinas , Proteína Disulfuro Isomerasas/metabolismo , Proteína Glutamina Gamma Glutamiltransferasa 2 , Subunidades de Proteína/metabolismo , Proteínas Represoras/metabolismo , Especificidad por Sustrato , Transglutaminasas/deficiencia
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...