Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 32
Filtrar
Más filtros













Base de datos
Intervalo de año de publicación
1.
Blood ; 2024 Jun 14.
Artículo en Inglés | MEDLINE | ID: mdl-38875504

RESUMEN

Epidemiological studies report opposing influences of infection on childhood B cell acute lymphoblastic leukemia (B-ALL). Although infections in the first year of life appear to exert the largest impact on leukemia risk, the effect of early pathogen exposure on the fetal preleukemia cells (PLC) that lead to B-ALL has yet to be reported. Using cytomegalovirus as a model early-life infection, we show that virus exposure within one week of birth induces profound depletion of transplanted B-ALL cells in two mouse models and of in situ-generated PLC in Eu-ret mice. The age-dependent depletion of PLC results from an elevated STAT4-mediated cytokine response in neonates, with high levels of IL-12p40-driven IFN-g production inducing PLC death. Similar PLC depletion can be achieved in adult mice by impairing viral clearance. These findings provide mechanistic support for an inhibitory effect of early-life infection on B-ALL progression and could inform development of therapeutic or preventative approaches.

2.
Leukemia ; 38(5): 969-980, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38519798

RESUMEN

The presence of supernumerary chromosomes is the only abnormality shared by all patients diagnosed with high-hyperdiploid B cell acute lymphoblastic leukemia (HD-ALL). Despite being the most frequently diagnosed pediatric leukemia, the lack of clonal molecular lesions and complete absence of appropriate experimental models have impeded the elucidation of HD-ALL leukemogenesis. Here, we report that for 23 leukemia samples isolated from moribund Eµ-Ret mice, all were characterized by non-random chromosomal gains, involving combinations of trisomy 9, 12, 14, 15, and 17. With a median gain of three chromosomes, leukemia emerged after a prolonged latency from a preleukemic B cell precursor cell population displaying more diverse aneuploidy. Transition from preleukemia to overt disease in Eµ-Ret mice is associated with acquisition of heterogeneous genomic abnormalities affecting the expression of genes implicated in pediatric B-ALL. The development of abnormal centrosomes in parallel with aneuploidy renders both preleukemic and leukemic cells sensitive to inhibitors of centrosome clustering, enabling targeted in vivo depletion of leukemia-propagating cells. This study reveals the Eµ-Ret mouse to be a novel tool for investigating HD-ALL leukemogenesis, including supervision and selection of preleukemic aneuploid clones by the immune system and identification of vulnerabilities that could be targeted to prevent relapse.


Asunto(s)
Modelos Animales de Enfermedad , Leucemia-Linfoma Linfoblástico de Células Precursoras B , Animales , Ratones , Leucemia-Linfoma Linfoblástico de Células Precursoras B/genética , Leucemia-Linfoma Linfoblástico de Células Precursoras B/patología , Aneuploidia , Humanos , Leucemia-Linfoma Linfoblástico de Células Precursoras/genética , Leucemia-Linfoma Linfoblástico de Células Precursoras/patología , Centrosoma/patología , Diploidia
3.
Blood Adv ; 7(22): 7087-7099, 2023 11 28.
Artículo en Inglés | MEDLINE | ID: mdl-37824841

RESUMEN

Common infections have long been proposed to play a role in the development of pediatric B-cell acute lymphoblastic leukemia (B-ALL). However, epidemiologic studies report contradictory effects of infection exposure on subsequent B-ALL risk, and no specific pathogen has been definitively linked to the disease. A unifying mechanism to explain the divergent outcomes could inform disease prevention strategies. We previously reported that the pattern recognition receptor (PRR) ligand Poly(I:C) exerted effects on B-ALL cells that were distinct from those observed with other nucleic acid-based PRR ligands. Here, using multiple double-stranded RNA (dsRNA) moieties, we show that the overall outcome of exposure to Poly(I:C) reflects the balance of opposing responses induced by its ligation to endosomal and cytoplasmic receptors. This PRR response biology is shared between mouse and human B-ALL and can increase leukemia-initiating cell burden in vivo during the preleukemia phase of B-ALL, primarily through tumor necrosis factor α signaling. The age of the responding immune system further influences the impact of dsRNA exposure on B-ALL cells in both mouse and human settings. Overall, our study demonstrates that potentially proleukemic and antileukemic effects can each be generated by the stimulation of pathogen recognition pathways and indicates a mechanistic explanation for the contrasting epidemiologic associations reported for infection exposure and B-ALL.


Asunto(s)
Leucemia-Linfoma Linfoblástico de Células Precursoras B , Transducción de Señal , Ratones , Humanos , Animales , Niño , Ligandos , ARN Bicatenario/farmacología , Linfocitos B
4.
Int J Mol Sci ; 24(15)2023 Jul 28.
Artículo en Inglés | MEDLINE | ID: mdl-37569447

RESUMEN

High-risk neuroblastoma remains a profound clinical challenge that requires eradication of neuroblastoma cells from a variety of organ sites, including bone marrow, liver, and CNS, to achieve a cure. While preclinical modeling is a powerful tool for the development of novel cancer therapies, the lack of widely available models of metastatic neuroblastoma represents a significant barrier to the development of effective treatment strategies. To address this need, we report a novel luciferase-expressing derivative of the widely used Th-MYCN mouse. While our model recapitulates the non-metastatic neuroblastoma development seen in the parental transgenic strain, transplantation of primary tumor cells from disease-bearing mice enables longitudinal monitoring of neuroblastoma growth at distinct sites in immune-deficient or immune-competent recipients. The transplanted tumors retain GD2 expression through many rounds of serial transplantation and are sensitive to GD2-targeted immune therapy. With more diverse tissue localization than is seen with human cell line-derived xenografts, this novel model for high-risk neuroblastoma could contribute to the optimization of immune-based treatments for this deadly disease.


Asunto(s)
Neuroblastoma , Ratones , Humanos , Animales , Proteína Proto-Oncogénica N-Myc , Ratones Transgénicos , Neuroblastoma/terapia , Neuroblastoma/tratamiento farmacológico , Adaptación Fisiológica , Aclimatación
5.
Bioimpacts ; 12(5): 463-470, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36381631

RESUMEN

Introduction: Measurement of pancreatic beta cell mass in animal models is a common assay in diabetes researches. Novel whole-organ clearance methods in conjunction with transgenic mouse models hold tremendous promise to improve beta cell mass measurement methods. Here, we proposed a refined method to estimate the beta cell mass using a new transgenic Tg(Pdx1-GFP) mouse model and a recently developed free-of-acrylamide clearing tissue (FACT) protocol. Methods: First, we generated and evaluated a Tg(Pdx1-GFP) transgenic mouse model. Using the FACT protocol in our model, we could quantify the beta cell mass and alloxan-induced beta cell destruction in whole pancreas specimens. Results: Compiled fluorescent images of pancreas resulted in enhanced beta cell mass characterization in FACT-cleared sections (2928869±120215 AU) compared to No-FACT cleared sections (1292372±325632 AU). Additionally, the total number of detected islets with this method was significantly higher than the other clearance methods (155.7 and 109, respectively). Using this method, we showed green fluorescent protein (GFP) expression confined to beta cells in Tg(Pdx1-GFP) transgenic. This enhanced GFP expression enabled us to accurately measure beta cell loss in a beta cell destruction model. The results suggest that our proposed method can be used as a simple, and rapid assay for beta cell mass measurement in islet biology and diabetes studies. Conclusion: The Tg(Pdx1-GFP) transgenic mouse in conjunction with the FACT protocol can enhance large-scale screening studies in the field of diabetes.

6.
Cell Transplant ; 31: 9636897221113803, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35912954

RESUMEN

Fibroblasts, or their homolog stromal cells, are present in most tissues and play an essential role in tissue homeostasis and regeneration. As a result, fibroblast-based strategies have been widely employed in tissue engineering. However, while considered to have immunosuppressive properties, the survival and functionality of allogeneic fibroblasts after transplantation remain controversial. Here, we evaluated innate and adaptive immune responses against allogeneic fibroblasts following intradermal injection into different immune-deficient mouse strains. While allogeneic fibroblasts were rejected 1 week after transplantation in immunocompetent mice, rejection did not occur in immunodeficient γ chain-deficient NOD-SCID (NSG) mice. T-cell- and B-cell-deficient RAG1 knockout mice showed greater loss of fibroblasts by day 5 after transplantation compared with NSG mice (P ≤ 0.05) but prolonged persistence compared with wild-type recipient (P ≤ 0.005). Loss of fibroblasts correlated with the expression of proinflammatory chemokine genes and infiltration of myeloid cells in the transplantation site. Depletion of macrophages and neutrophils delayed rejection, revealing the role of innate immune cells in an early elimination of fibroblasts that is followed by T-cell-mediated rejection in the second week. These findings indicate that the application of allogeneic fibroblasts in tissue engineering products requires further improvements to overcome cell rejection by innate and adaptive immune cells.


Asunto(s)
Rechazo de Injerto , Trasplante de Células Madre Hematopoyéticas , Animales , Fibroblastos , Inmunidad , Ratones , Ratones Endogámicos BALB C , Ratones Endogámicos C57BL , Ratones Endogámicos NOD , Ratones SCID , Trasplante de Piel , Trasplante Homólogo
8.
J Bacteriol ; 201(24)2019 12 15.
Artículo en Inglés | MEDLINE | ID: mdl-31548274

RESUMEN

Chromosome dimers occur in bacterial cells as a result of the recombinational repair of DNA. In most bacteria, chromosome dimers are resolved by XerCD site-specific recombination at the dif (deletion-induced filamentation) site located in the terminus region of the chromosome. Caulobacter crescentus, a Gram-negative oligotrophic bacterium, also possesses Xer recombinases, called CcXerC and CcXerD, which have been shown to interact with the Escherichia colidif site in vitro Previous studies on Caulobacter have suggested the presence of a dif site (referred to in this paper as dif1CC ), but no in vitro data have shown any association with this site and the CcXer proteins. Using recursive hidden Markov modeling, another group has proposed a second dif site, which we call dif2CC , which shows more similarity to the dif consensus sequence. Here, by using a combination of in vitro experiments, we compare the affinities and the cleavage abilities of CcXerCD recombinases for both dif sites. Our results show that dif2CC displays a higher affinity for CcXerC and CcXerD and is bound cooperatively by these proteins, which is not the case for the original dif1CC site. Furthermore, dif2CC nicked substrates are more efficiently cleaved by CcXerCD, and deletion of the site results in about 5 to 10% of cells showing an altered cellular morphology.IMPORTANCE Bacteria utilize site-specific recombination for a variety of purposes, including the control of gene expression, acquisition of genetic elements, and the resolution of dimeric chromosomes. Failure to resolve dimeric chromosomes can lead to cell division defects in a percentage of the cell population. The work presented here shows the existence of a chromosomal resolution system in C. crescentus Defects in this resolution system result in the formation of chains of cells. Further understanding of how these cells remain linked together will help in the understanding of how chromosome segregation and cell division are linked in C. crescentus.


Asunto(s)
Caulobacter crescentus/genética , Cromosomas Bacterianos/genética , Proteínas Bacterianas/fisiología , División Celular , Segregación Cromosómica , Recombinación Genética , Respuesta SOS en Genética
9.
Iran J Basic Med Sci ; 21(9): 889-895, 2018 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-30524688

RESUMEN

OBJECTIVES: Fetal microchimerism is the persistence of allogeneic cell population that transfer from the fetus to the mother. The aim of this study was to evaluate the presence of fetal microchimerism in the pancreas of the mouse with acute pancreatitis (AP). MATERIALS AND METHODS: In this experimental study, female wild-type mice were mated with male EGFP+. AP model was obtained by injection of caerulein two days after delivery. Sixty mice were divided into 3 groups: the virgin pancreatitis-induced animals, pregnant pancreatitis-induced animals mated with transgenic EGFP mice, and pregnant sham animals. To prove pancreatitis induction, the blood amylase and lipase were assessed; and pancreas was removed from a subpopulation of each group for histopathological examinations after 6 hr. The remaining mice were kept for 3 weeks and histopathological exanimation, immunohistochemistry, and PCR were performed. RESULTS: EGFP+ cells were found in acini and around the blood vessels in the pancreas of pregnant pancreatitis-induced animals. They differentiated to acinar, adipocyte-like, and mesenchymal-like cells. PCR showed that 20% of the pregnant pancreatitis-induced animals were EGFP+. The histopathological study showed improvement in pancreatitis scores in the mice with history of pregnancy. CONCLUSION: It seems that pregnancy has a beneficial impact on caerulein-induced pancreatitis and improves the pancreatitis score in mouse.

10.
Tissue Eng Part A ; 24(11-12): 955-967, 2018 06.
Artículo en Inglés | MEDLINE | ID: mdl-29303417

RESUMEN

Acute and chronic wounds contribute to increased morbidity and mortality in affected people and impose significant financial burdens on healthcare systems. For these challenging wounds, acellular dermal matrices (ADMs) have been used as a biological wound coverage. Unlike engineered dermal matrices, ADMs are prepared through the removal of cells from skin, while preserving the extracellular matrix structure and function. In this study, our primary objective was to develop a detergent-free method for decellularization of the skin to mitigate chemical stress on matrix molecules. Then, we performed a set of in vitro and in vivo experiments to compare this method with nonionic and anionic detergent methods. All decellularization methods satisfactorily removed cells and supported fibroblast growth and migration in vitro. Sulfated glycosaminoglycan content was reduced significantly (p < 0.05) only in the ionic detergent treatment group. In contrast to the detergent-free method, all detergent-based methods significantly reduced scaffold mechanical strength and elastin content (p < 0.05). Three weeks after transplantation, the results showed reepithelialization, angiogenesis, and migration of host cell into scaffolds with no induction of immunogenic reaction in all ADM groups tested. In our study, the detergent-free method showed better preservation of matrix composition and biomechanical properties, but after transplantation, all methods of ADM preparation resulted in equally biofunctional matrices as wound coverage.


Asunto(s)
Detergentes/química , Piel/citología , Dermis Acelular , Animales , Movimiento Celular/fisiología , Matriz Extracelular/química , Glicosaminoglicanos/química , Ratones , Cicatrización de Heridas/fisiología
11.
J Burn Care Res ; 39(2): 175-182, 2018 02 20.
Artículo en Inglés | MEDLINE | ID: mdl-28486306

RESUMEN

Burn injuries are one of the most common sources of trauma globally that comprise a significant drain on long-term personal and healthcare cost. Large surface area burn wounds are difficult to manage and may result in significant physiologic and psychologic sequelae. The goal of burn wound healing research is to fully repair and restore skin's original structure and functionality while minimizing problems such as hypertrophic scarring and contracture. One of the ways this can be achieved is through augmentation of the skin's natural healing process using the regenerative capability of stem cells. In this review, the authors highlight some recent developments in treatment of burn wounds employing stem cells. We compare and contrast the benefits and drawbacks to various sources of stem cells and techniques of delivery into damaged tissues that have been the focus of established and ongoing research, and avenues of exploration this burgeoning arena offers for the future.


Asunto(s)
Quemaduras/terapia , Trasplante de Células Madre , Células Madre/fisiología , Humanos
12.
J Cell Physiol ; 231(9): 1964-73, 2016 09.
Artículo en Inglés | MEDLINE | ID: mdl-26743772

RESUMEN

Indoleamine 2,3-dioxygenase (IDO) induces immunological tolerance in physiological and pathological conditions. Therefore, we used dermal fibroblasts with stable IDO expression as a cell therapy to: (i) Investigate the factors determining the efficacy of this cell therapy for autoimmune diabetes in non-obese diabetic (NOD) mice; (ii) Scrutinize the potential immunological mechanisms. Newly diabetic NOD mice were randomly injected with either 10 × 10(6) (10M) or 15 × 10(6) (15M) IDO-expressing dermal fibroblasts. Blood glucose levels (BGLs), body weight, plasma kynurenine levels, insulitis severity, islet beta cell function, autoreactive CD8(+) T cells, Th17 cells and regulatory T cells (Tregs) were then investigated in these mice. IL-1ß and cleaved caspase-3 levels were assessed in islets co-cultured with IDO-expressing fibroblasts. BGLs in 83% mice treated with 15M IDO-expressing fibroblasts recovered to normal up to 120 days. However, only 17% mice treated with 10M IDO-expressing cells were reversed to normoglycemia. A 15M IDO-expressing fibroblasts significantly reduced infiltrated immune cells in islets and recovered the functionality of remaining islet beta cells in NOD mice. Additionally, they successfully inhibited autoreactive CD8(+) T cells and Th17 cells as well as increased Tregs in different organs of NOD mice. Islet beta cells co-cultured with IDO-expressing fibroblasts had reduced IL-1ß levels and cell apoptosis. Both cell number and IDO enzymatic activity contributes to the efficiency of IDO cell therapy. Optimized IDO-expressing fibroblasts successfully reverse the progression of diabetes in NOD mice through induction of Tregs as well as inhibition of beta cell specific autoreactive CD8(+) T cells and Th17 cells. J. Cell. Physiol. 231: 1964-1973, 2016. © 2016 Wiley Periodicals, Inc.


Asunto(s)
Diabetes Mellitus Experimental/inmunología , Fibroblastos/enzimología , Hiperglucemia/metabolismo , Indolamina-Pirrol 2,3,-Dioxigenasa/metabolismo , Células Secretoras de Insulina/inmunología , Animales , Diabetes Mellitus Experimental/metabolismo , Diabetes Mellitus Tipo 1/inmunología , Diabetes Mellitus Tipo 1/metabolismo , Femenino , Hiperglucemia/inmunología , Células Secretoras de Insulina/enzimología , Masculino , Ratones Endogámicos C57BL , Ratones Endogámicos NOD , Linfocitos T Reguladores/inmunología
13.
Gene Expr Patterns ; 20(1): 63-70, 2016 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-26699687

RESUMEN

Our aim was to evaluate the oocyte maturation rate and follicular genes expression pattern during in-vitro culture of vitrified mouse pre-antral follicles. Middle sized pre-antral follicles were isolated mechanically from the ovaries of pre-pubertal mice and distributed in vitrification and control groups. In the vitrification group, follicles were washed in equilibration and vitrification solutions and then were immersed in liquid nitrogen after loading on cryotop tips. After warming in descending concentrations of sucrose solutions, fresh and vitrified-warmed follicles were cultured for 13 days. Follicles survival rate and follicular genes expression were assessed during in vitro culture. Finally, at the end of the culture period oocytes maturation rate were compared in both groups. In the vitrification group, follicles survival rate was lower significantly comparing to the control group (P < 0.05), whereas oocytes maturation rate were similar. Although at the beginning of the culture period, expression of some genes such as Gdf9, Bmp15, Tgfß1 and BmprII were higher in the vitrification group (P < 0.05), during the rest of the culture period expression pattern of all follicular genes were similar in both groups. In conclusion, survival rate of cryotop vitrified pre-antral follicles reduced during culture period while oocytes maturation and follicular genes expression did not show any noticeable alteration.


Asunto(s)
Oogénesis , Folículo Ovárico/citología , Folículo Ovárico/embriología , Técnicas de Cultivo de Tejidos/métodos , Animales , Supervivencia Celular , Criopreservación , Medios de Cultivo , Femenino , Perfilación de la Expresión Génica , Ratones , Oogénesis/genética , Folículo Ovárico/metabolismo , Vitrificación
14.
Mol Plant Pathol ; 17(4): 501-9, 2016 May.
Artículo en Inglés | MEDLINE | ID: mdl-26177341

RESUMEN

The genes conferring pathogenicity in Streptomyces turgidiscabies, a pathogen causing common scab of potato, are grouped together on a pathogenicity island (PAI), which has been found to be mobile and appears to transfer and disseminate like an integrative and conjugative element (ICE). However, in Streptomyces scabiei, another common scab-inducing species, the pathogenicity genes are clustered in two regions: the toxicogenic region (TR) and the colonization region. The S. scabiei 87.22 genome was analysed to investigate the potential mobility of the TR. Attachment sites (att), short homologous sequences that delineate ICEs, were identified at both extremities of the TR. An internal att site was also found, suggesting that the TR has a composite structure (TR1 and TR2). Thaxtomin biosynthetic genes, essential for pathogenicity, were found in TR1, whereas candidate genes with known functions in recombination, replication and conjugal transfer were found in TR2. Excision of the TR1 or TR2 subregions alone, or of the entire TR region, was observed, although the excision frequency of TR was low. However, the excision frequency was considerably increased in the presence of either mitomycin C or Streptomyces coelicolor cells. A composite TR structure was not observed in all S. scabiei and Streptomyces acidiscabies strains tested. Of the ten strains analysed, seven lacked TR2 and no TR excision event could be detected in these strains, thus suggesting the implication of TR2 in the mobilization of S. scabiei TR.


Asunto(s)
Toxinas Bacterianas/genética , Cromosomas Bacterianos/genética , Ambiente , Islas Genómicas/genética , Streptomyces/genética , Streptomyces/patogenicidad , Genoma Bacteriano , Mitomicina/farmacología , Sistemas de Lectura Abierta/genética , Enfermedades de las Plantas/microbiología , Streptomyces/efectos de los fármacos
15.
Eur J Endocrinol ; 173(5): R165-83, 2015 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-26036437

RESUMEN

Over the past decades, tremendous efforts have been made to establish pancreatic islet transplantation as a standard therapy for type 1 diabetes. Recent advances in islet transplantation have resulted in steady improvements in the 5-year insulin independence rates for diabetic patients. Here we review the key challenges encountered in the islet transplantation field which include islet source limitation, sub-optimal engraftment of islets, lack of oxygen and blood supply for transplanted islets, and immune rejection of islets. Additionally, we discuss possible solutions for these challenges.


Asunto(s)
Diabetes Mellitus Tipo 1/cirugía , Trasplante de Islotes Pancreáticos/normas , Humanos
16.
Cell J ; 16(1): 63-72, 2014 Feb 03.
Artículo en Inglés | MEDLINE | ID: mdl-24518969

RESUMEN

OBJECTIVE: In vitro production of a definitive endoderm (DE) is an important issue in stem cell-related differentiation studies and it can assist with the production of more efficient endoderm derivatives for therapeutic applications. Despite tremendous progress in DE differentiation of human embryonic stem cells (hESCs), researchers have yet to discover universal, efficient and cost-effective protocols. MATERIALS AND METHODS: In this experimental study, we have treated hESCs with 200 nM of Stauprimide (Spd) for one day followed by activin A (50 ng/ml; A50) for the next three days (Spd-A50). In the positive control group, hESCs were treated with Wnt3a (25 ng/ml) and activin A (100 ng/ml) for the first day followed by activin A for the next three days (100 ng/ml; W/A100-A100). RESULTS: Gene expression analysis showed up regulation of DE-specific marker genes (SOX17, FOXA2 and CXCR4) comparable to that observed in the positive control group. Expression of the other lineage specific markers did not significantly change (p<0.05). We also obtained the same gene expression results using another hESC line. The use of higher concentrations of Spd (400 and 800 nM) in the Spd-A50 protocol caused an increase in the expression SOX17 as well as a dramatic increase in mortality rate of the hESCs. A lower concentration of activin A (25 ng/ml) was not able to up regulate the DE-specific marker genes. Then, A50 was replaced by inducers of definitive endoderm; IDE1/2 (IDE1 and IDE2), two previously reported small molecule (SM) inducers of DE, in our protocol (Spd-IDE1/2). This replacement resulted in the up regulation of visceral endoderm (VE) marker (SOX7) but not DE-specific markers. Therefore, while the Spd-A50 protocol led to DE production, we have shown that IDE1/2 could not fully replace activin A in DE induction of hESCs. CONCLUSION: These findings can assist with the design of more efficient chemically-defined protocols for DE induction of hESCs and lead to a better understanding of the different signaling networks that are involved in DE differentiation of hESCs.

17.
Stem Cell Rev Rep ; 10(1): 16-30, 2014 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-24036899

RESUMEN

Embryonic stem (ES) cells are considered to exist in a ground state if shielded from differentiation triggers. Here we show that FGF4 and TGFß signaling pathway inhibitors, designated R2i, not only provide the ground state pluripotency in production and maintenance of naïve ES cells from blastocysts of different mouse strains, but also maintain ES cells with higher genomic integrity following long-term cultivation compared with the chemical inhibition of the FGF4 and GSK3 pathways, known as 2i. Global transcriptome analysis of the ES cells highlights augmented BMP4 signaling pathway. The crucial role of the BMP4 pathway in maintaining the R2i ground state pluripotency is demonstrated by BMP4 receptor suppression, resulting in differentiation and cell death. In conclusion, by inhibiting TGFß and FGF signaling pathways, we introduce a novel defined approach to efficiently establish the ground state pluripotency.


Asunto(s)
Benzamidas/farmacología , Dioxoles/farmacología , Difenilamina/análogos & derivados , Células Madre Embrionarias/citología , Células Madre Embrionarias/efectos de los fármacos , Células Madre Pluripotentes/citología , Células Madre Pluripotentes/efectos de los fármacos , Transducción de Señal/efectos de los fármacos , Factor de Crecimiento Transformador beta/antagonistas & inhibidores , Animales , Benzamidas/química , Células Cultivadas , Dioxoles/química , Difenilamina/química , Difenilamina/farmacología , Células Madre Embrionarias/metabolismo , Ratones , Ratones Endogámicos BALB C , Ratones Endogámicos C57BL , Ratones Endogámicos DBA , Células Madre Pluripotentes/metabolismo , Relación Estructura-Actividad , Factor de Crecimiento Transformador beta/metabolismo
18.
Immunobiology ; 219(1): 17-24, 2014 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-23891282

RESUMEN

Regulatory CD4(+)CD25(+)Foxp3(+) T cells (Tregs) can be induced and expanded by dendritic cells (DCs) in the presence of the enzyme indoleamine 2,3-dioxygenase (IDO). Here we report that a possible alternative to DCs are IDO expressing dermal fibroblasts (DFs), which are easier to isolate and sustain in culture compared to DCs. When mouse splenocytes were co-cultured with IDO expressing DFs, a significant increase in frequency and the number of Tregs was found compared to those of control group (13.16%±1.8 vs. 5.53%±1.2, p<0.05). Despite observing a higher total number of dead CD4(+) cells in the IDO group, there was a more abundant live CD4(+)CD25(+) subpopulation in this group. Further analysis reveales that these CD4(+) CD25(+) cells have the capacity to expand in the presence of IDO expressing DFs. Greater number of CTLA-4(+) cells and high expression of TGF-ß and IL-10 were found in CD4(+) cells of the IDO group compared to those of the controls. This finding confirmed a suppressive functionality of the expanded Tregs. Furthermore, CD4(+) CD25(+) cells isolated from the IDO group showed an alloantigen specific suppressive effect in a mixed lymphocyte reaction assay. These results confirm that IDO expressing dermal fibroblasts can expand a population of suppressive antigen specific Tregs. In conclusion, IDO expressing dermal fibroblasts have the capacity to stimulate the expansion of a subset of Tregs which can be used to generate antigen-specific immune tolerance.


Asunto(s)
Proliferación Celular , Fibroblastos/inmunología , Indolamina-Pirrol 2,3,-Dioxigenasa/inmunología , Linfocitos T Reguladores/inmunología , Animales , Antígenos/inmunología , Antígenos/metabolismo , Linfocitos T CD4-Positivos/inmunología , Linfocitos T CD4-Positivos/metabolismo , Antígeno CTLA-4/inmunología , Antígeno CTLA-4/metabolismo , Células Cultivadas , Técnicas de Cocultivo , Fibroblastos/metabolismo , Citometría de Flujo , Expresión Génica/efectos de los fármacos , Expresión Génica/inmunología , Indolamina-Pirrol 2,3,-Dioxigenasa/genética , Indolamina-Pirrol 2,3,-Dioxigenasa/metabolismo , Interferón gamma/inmunología , Interferón gamma/farmacología , Interleucina-10/genética , Interleucina-10/metabolismo , Subunidad alfa del Receptor de Interleucina-2/inmunología , Subunidad alfa del Receptor de Interleucina-2/metabolismo , Ratones , Ratones Endogámicos BALB C , Ratones Endogámicos C57BL , Ratones Noqueados , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Piel/citología , Linfocitos T Reguladores/metabolismo , Factor de Crecimiento Transformador beta/genética , Factor de Crecimiento Transformador beta/metabolismo , Triptófano/análogos & derivados , Triptófano/inmunología , Triptófano/farmacología
19.
Theriogenology ; 81(2): 302-8, 2014 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-24139934

RESUMEN

Vitrification is considered a viable method for cryopreservation of ovarian tissue and selection of methods that minimize follicular damage is important. The objective of the present study was to evaluate the effects of two vitrification methods on ovarian tissue morphology, preantral follicles survival rate during in vitro culture, and relative expression of genes associated with oocyte maturation and cumulus expansion. Ovaries from 12-day-old mice were vitrified in media containing ethylene glycol, dimethyl sulphoxide, and sucrose. Before plunging in liquid nitrogen, ovaries were first loaded into an acupuncture needle (needle immersion vitrification [NIV]) or placed on a cold steel surface for 10 to 20 seconds (solid surface vitrification [SSV]). The integrity of the ovarian tissue was well-preserved after vitrification and was similar controls. Follicle viability in the SSV group was lower (P < 0.05) than in the control group after 6 days of culture and the NIV group after 10 day of culture. Follicle viability after 12 day of culture was 92.8%, 82.1%, and 58.4% in control, NIV, and SSV groups, respectively. Bmp15, Gdf9, BmprII, Alk6, Alk5, Has2, and Ptgs2 gene expression patterns were similar among groups. However, the level of gene expression in the vitrification groups during Days 6 to 10 were higher compared with the control group. In conclusion, ovarian tissue morphologic integrity was well-preserved, regardless of the vitrification method. Vitrification using the needle immersion method resulted in greater follicular survival after 12 day of culture than the SSV method. Gene expression patterns during culture did not seem to explain the reduced survival rate observed in the solid surface group.


Asunto(s)
Criopreservación/veterinaria , Ratones/fisiología , Ovario/fisiología , Animales , Criopreservación/métodos , Femenino , Folículo Ovárico/crecimiento & desarrollo , Folículo Ovárico/metabolismo , Vitrificación
20.
Cell Biol Int ; 37(4): 370-9, 2013 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-23408701

RESUMEN

Understanding the extracellular matrix (ECM) effect on pancreatic ß cells is critical to optimise the derivation of functional ß cells for transplantation and understand mechanisms that control islet neogenesis and glucose homeostasis. We assessed the effect of natural ECMs [collagen I, collagen IV, laminin and fibronectin (FN)] on rat islets of Langerhans' morphology, adhesion, viability, functionality and islet specific genes expression after 7 days in vitro culture. However, we could not detect a significant difference on the other parameters in these ECMs and islets interaction. To examine islets interactions, we used a synthetic three dimensional surface composed of electrospun polyamide nanofibres. Laminin-coated nanofibrillar surfaces, but not laminin or nanosurface alone, induced comparable expression of the Ins1 and Ins2 genes in adult ß cells. Using a glucose challenge test, a marked response of insulin secretion by islets occurred that were cultured on laminin-coated nanofibrillar surfaces.We contend that the reestablishment of cellular interactions by the combination of nanomaterials and natural ECMs can be useful in maintaining in vitro islet functions.


Asunto(s)
Islotes Pancreáticos/fisiología , Laminina/química , Nanofibras/química , Animales , Adhesión Celular , Supervivencia Celular , Materiales Biocompatibles Revestidos/química , Técnicas Electroquímicas , Expresión Génica , Islotes Pancreáticos/citología , Lactonas , Masculino , Ratas Wistar , Técnicas de Cultivo de Tejidos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA