Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Dis Model Mech ; 2024 Jun 21.
Artículo en Inglés | MEDLINE | ID: mdl-38903011

RESUMEN

Pathogenic variants in GFPT1, encoding a key enzyme to synthesize UDP-N-acetylglucosamine (UDP-GlcNAc), cause congenital myasthenic syndrome (CMS). We made a knock-in (KI) mouse model carrying a frameshift variant in Gfpt1 exon 9 simulating a CMS patient. As Gfpt1 exon 9 is exclusively included in striated muscles, Gfpt1-KI mice were deficient for Gfpt1 only in skeletal muscles. In Gfpt1-KI mice, (i) UDP-HexNAc, CMP-NeuAc, and protein O-GlcNAcylations were reduced in skeletal muscles; (ii) aged Gfpt1-KI mice showed poor exercise performance and abnormal neuromuscular junction structures; and (iii) markers for unfolded protein response (UPR) were elevated in skeletal muscles. Denervation-mediated enhancement of ER stress in Gfpt1-KI mice facilitated protein folding, ubiquitin-proteasome degradation, and apoptosis, whereas autophagy was not induced and protein aggregates were markedly increased. Lack of autophagy was accounted for by enhanced degradation of FoxO1 by increased Xbp1-s/u proteins. Similarly, in Gfpt1-silenced C2C12 myotubes, ER stress exacerbated protein aggregates and activated apoptosis, but autophagy was attenuated. In both skeletal muscles in Gfpt1-KI mice and Gfpt1-silenced C2C12 myotubes, maladaptive UPR failed to eliminate protein aggregates and provoked apoptosis.

2.
J Hum Genet ; 69(6): 235-244, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38424183

RESUMEN

Dyssegmental dysplasia (DD) is a severe skeletal dysplasia comprised of two subtypes: lethal Silverman-Handmaker type (DDSH) and nonlethal Rolland-Desbuquois type (DDRD). DDSH is caused by biallelic pathogenic variants in HSPG2 encoding perlecan, whereas the genetic cause of DDRD remains undetermined. Schwartz-Jampel syndrome (SJS) is also caused by biallelic pathogenic variants in HSPG2 and is an allelic disorder of DDSH. In SJS and DDSH, 44 and 8 pathogenic variants have been reported in HSPG2, respectively. Here, we report that five patients with DDRD carried four pathogenic variants in HSPG2: c.9970 G > A (p.G3324R), c.559 C > T (p.R187X), c7006 + 1 G > A, and c.11562 + 2 T > G. Two patients were homozygous for p.G3324R, and three patients were heterozygous for p.G3324R. Haplotype analysis revealed a founder haplotype spanning 85,973 bp shared in the five patients. SJS, DDRD, and DDSH are allelic disorders with pathogenic variants in HSPG2.


Asunto(s)
Haplotipos , Proteoglicanos de Heparán Sulfato , Osteocondrodisplasias , Femenino , Humanos , Masculino , Alelos , Enfermedades del Desarrollo Óseo/genética , Enfermedades del Desarrollo Óseo/patología , Efecto Fundador , Proteoglicanos de Heparán Sulfato/genética , Mutación , Osteocondrodisplasias/genética , Osteocondrodisplasias/patología , Enfermedades Fetales
3.
iScience ; 26(10): 107746, 2023 Oct 20.
Artículo en Inglés | MEDLINE | ID: mdl-37744035

RESUMEN

Glutamine:fructose-6-phosphate transaminase 1 (GFPT1) is the rate-limiting enzyme of the hexosamine biosynthetic pathway (HBP). A 54-bp exon 9 of GFPT1 is specifically included in skeletal and cardiac muscles to generate a long isoform of GFPT1 (GFPT1-L). We showed that SRSF1 and Rbfox1/2 cooperatively enhance, and hnRNP H/F suppresses, the inclusion of human GFPT1 exon 9 by modulating recruitment of U1 snRNP. Knockout (KO) of GFPT1-L in skeletal muscle markedly increased the amounts of GFPT1 and UDP-HexNAc, which subsequently suppressed the glycolytic pathway. Aged KO mice showed impaired insulin-mediated glucose uptake, as well as muscle weakness and fatigue likely due to abnormal formation and maintenance of the neuromuscular junction. Taken together, GFPT1-L is likely to be acquired in evolution in mammalian striated muscles to attenuate the HBP for efficient glycolytic energy production, insulin-mediated glucose uptake, and the formation and maintenance of the neuromuscular junction.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...