RESUMEN
Liquid biopsy for CNS tumors is in its nascent phase, hindered by the low levels of circulating tumor DNA (ctDNA). Overcoming this challenge requires highly sensitive molecular techniques. DD-PCR emerges as a standout technique due to its ability to identify rare mutations, copy number variations, and circulating nucleic acids, making it one of the best methods for identifying somatic mutations in cell-free DNA (cfDNA). Despite promising results from various studies demonstrating the feasibility of obtaining informative ctDNA profiles from liquid biopsy samples, challenges persist, including the need to standardize sample collection, storage, and processing methods, define clear assay positivity thresholds, and address the overall low assay sensitivity. Our two-phase study began by assessing DD-PCR efficacy in FFPE tissues, revealing robust concordance with immunohistochemistry. In Phase 1 (85 cases), DD-PCR on FFPE tissues demonstrated 100â¯% sensitivity and specificity for IDH1 R132H mutations. In Phase 2 (100 cases), analysis extended to cfDNA, maintaining high specificity (100â¯%) with moderate sensitivity (44.2â¯%). Overall concordance with immunohistochemistry was 61â¯%, highlighting liquid biopsy's potential in glioma management. The findings emphasized DD-PCR's clinical utility in both tissue and liquid biopsy, underscoring its role in early detection, diagnosis, and therapeutic monitoring of diffuse gliomas.
RESUMEN
BACKGROUND: Next-generation sequencing has enabled non-invasive diagnosis of type IV collagen disease in clinical settings other than the typical presentation of Alport syndrome (AS). METHODS: We reviewed the clinical and histological records of children diagnosed with Alport syndrome based on next-generation sequencing. Variants on clinical exome sequencing were categorized using ACMG 2015 criteria. RESULTS: During 2015-2023, we found 43 patients (34 boys) with 39 variants in COL4A5 (n = 27), COL4A4 (n = 7), and COL4A3 (n = 5). Thirty, 8, and 5 patients had X-linked, autosomal recessive, and autosomal dominant disease, respectively. The median (IQR) age and eGFR at diagnosis were 10 (7-13) years and 100.1 (59-140) ml/min/1.73 m2, respectively. Fifteen patients were initially diagnosed with steroid-resistant nephrotic syndrome. Alport syndrome was suspected in these patients due to persistent microscopic hematuria, eGFR < 90 ml/min/1.73 m2, characteristic histology, and/or non-response to immunosuppression. Of 26 patients who underwent kidney biopsy, light microscopy revealed focal segmental glomerulosclerosis, minimal change disease, and mesangial proliferative glomerulonephritis in 9, 9, and 8 patients, respectively. Electron microscopy (n = 18) showed characteristic glomerular basement membrane changes and/or foot process effacement in 12 and 16 cases, respectively. Twenty-one patients (48.8%) had high-frequency sensorineural hearing loss, while two had lenticonus. Twelve patients progressed to chronic kidney disease stages 4-5. Median survival (IQR) with eGFR > 30 ml/min/1.73 m2 was 15.6 (13-18) years. CONCLUSIONS: The phenotype of Alport syndrome varies from asymptomatic urinary abnormalities to hematuria, proteinuria and/or low eGFR, and steroid-resistant nephrotic syndrome. Adverse outcomes are common, especially in boys with X-linked disease.
RESUMEN
SQSTM1 (Sequestosome 1) also known as p62, plays several important physiological roles in the cell. It regulates autophagy and mitochondrial homeostasis and can further lead to metabolic reprogramming. Pathogenic variants in SQSTM1 gene are known to cause Neurodegeneration with ataxia, dystonia, and gaze palsy in autosomal recessive inheritance fashion. We report here, the generation of induced pluripotent stem cell (iPSC) line (IGIBi010-A) carrying a novel homozygous frameshift variant in SQSTM1 i.e. p.Leu251SerfsTer4. In future, this iPSC line will be used as a resource to elucidate the molecular pathway, targeting strategies for disease biology derived by variation in SQSTM1 gene.
Asunto(s)
Células Madre Pluripotentes Inducidas , Enfermedades Neurodegenerativas , Fenotipo , Proteína Sequestosoma-1 , Humanos , Células Madre Pluripotentes Inducidas/metabolismo , Proteína Sequestosoma-1/metabolismo , Proteína Sequestosoma-1/genética , Enfermedades Neurodegenerativas/genética , Enfermedades Neurodegenerativas/patología , Línea Celular , Mutación , Masculino , FemeninoRESUMEN
The ultraviolet (UV) radiation triggers a pigmentation response in human skin, wherein, melanocytes rapidly activate divergent maturation and proliferation programs. Using single-cell sequencing, we demonstrate that these 2 programs are segregated in distinct subpopulations in melanocytes of human and zebrafish skin. The coexistence of these 2 cell states in cultured melanocytes suggests possible cell autonomy. Luria-Delbrück fluctuation test reveals that the initial establishment of these states is stochastic. Tracking of pigmenting cells ascertains that the stochastically acquired state is faithfully propagated in the progeny. A systemic approach combining single-cell multi-omics (RNA+ATAC) coupled to enhancer mapping with H3K27 acetylation successfully identified state-specific transcriptional networks. This comprehensive analysis led to the construction of a gene regulatory network (GRN) that under the influence of noise, establishes a bistable system of pigmentation and proliferation at the population level. This GRN recapitulates melanocyte behaviour in response to external cues that reinforce either of the states. Our work highlights that inherent stochasticity within melanocytes establishes dedicated states, and the mature state is sustained by selective enhancers mark through histone acetylation. While the initial cue triggers a proliferation response, the continued signal activates and maintains the pigmenting subpopulation via epigenetic imprinting. Thereby our study provides the basis of coexistence of distinct populations which ensures effective pigmentation response while preserving the self-renewal capacity.
Asunto(s)
Proliferación Celular , Redes Reguladoras de Genes , Melanocitos , Pigmentación de la Piel , Pez Cebra , Melanocitos/metabolismo , Pez Cebra/genética , Animales , Humanos , Pigmentación de la Piel/genética , Pigmentación de la Piel/fisiología , Procesos Estocásticos , Diferenciación Celular/genética , Histonas/metabolismo , Acetilación , Rayos Ultravioleta , Análisis de la Célula Individual , Pigmentación/genética , Elementos de Facilitación Genéticos/genética , Epigénesis Genética , Piel/metabolismo , Piel/citologíaRESUMEN
BACKGROUND: The ethnic diversity of India provides a unique opportunity to study the history of the origin of mutations of genetic disorders. Spinocerebellar ataxia type 27B (SCA27B), a recently identified dominantly inherited cerebellar disorder is caused by GAA-repeat expansions in intron 1 of Fibroblast Growth Factor 14 (FGF14). Predominantly reported in the European population, we aimed to screen this mutation and study the founder haplotype of SCA27B in Indian ataxia patients. METHODS: We have undertaken screening of GAA repeats in a large Indian cohort of ~ 1400 uncharacterised ataxia patients and kindreds and long-read sequencing-based GAA repeat length assessment. High throughput genotyping-based haplotype analysis was also performed. We utilized ~ 1000 Indian genomes to study the GAA at-risk expansion alleles. FINDINGS: We report a high frequency of 1.83% (n = 23) of SCA27B in the uncharacterized Indian ataxia cohort. We observed several biallelic GAA expansion mutations (n = 5) with younger disease onset. We observed a risk haplotype (AATCCGTGG) flanking the FGF14-GAA locus over a 74 kb region in linkage disequilibrium. We further studied the frequency of this risk haplotype across diverse geographical population groups. The highest prevalence of the risk haplotype was observed in the European population (29.9%) followed by Indians (21.5%). The observed risk haplotype has existed through ~ 1100 generations (~ 22,000 years), assuming a correlated genealogy. INTERPRETATION: This study provides valuable insights into SCA27B and its Upper Paleolithic origin in the Indian subcontinent. The high occurrence of biallelic expansion is probably relevant to the endogamous nature of the Indian population.
RESUMEN
Data are limited on the genetic profile of primary ciliary dyskinesia (PCD) from developing countries. Here, we report one of the first study on genetic profile of patients with suspected PCD from India. In this prospective cross-sectional study, we enrolled 162 children with suspected PCD. We recorded clinical features, relevant laboratory tests for PCD and performed whole exome sequencing (WES). We are reporting 67 patients here who had positive variant/s on WES. We had 117 variants in 40 genes among 67 patients. Among the 108 unique variants, 33 were categorized as pathogenic or likely pathogenic (P/LP). We had nine novel variants in out cohort. The 29 definite PCD cases, diagnosed by composite reference standards, had variants in 16 genes namely LRRC6/DNAAF11 (5), DNAH5 (3), CCDC39 (3), HYDIN (3), DNAH11 (2), CCDC40 (2), CCDC65 (2) and one each DNAAF3, DNAAF2, CFAP300, RPGR, CCDC103, CCDC114, SPAG1, DNAI1, and DNAH14. To conclude, we identified 108 unique variants in 40 genes among 67 patients. The common genes involved in definite cases of PCD in Indian patients were LRRC6, DNAH5, CCDC39, and HYDIN. Our findings suggest a need to develop a separate genetic panel for PCD in the Indian population.
Asunto(s)
Secuenciación del Exoma , Humanos , Masculino , India/epidemiología , Femenino , Niño , Preescolar , Mutación/genética , Predisposición Genética a la Enfermedad , Trastornos de la Motilidad Ciliar/genética , Trastornos de la Motilidad Ciliar/epidemiología , Trastornos de la Motilidad Ciliar/diagnóstico , Estudios Transversales , Adolescente , Lactante , Estudios Prospectivos , Síndrome de Kartagener/genética , Síndrome de Kartagener/diagnóstico , Síndrome de Kartagener/epidemiologíaRESUMEN
Tandem nucleotide repeat (TNR) expansions, particularly the CNG nucleotide configuration, are associated with a variety of neurodegenerative disorders. In this study, we aimed to identify novel unstable CNG repeat loci associated with the neurogenetic disorder spinocerebellar ataxia (SCA). Using a computational approach, 15,069 CNG repeat loci in the coding and noncoding regions of the human genome were identified. Based on the feature selection criteria (repeat length >10 and functional location of repeats), we selected 52 repeats for further analysis and evaluated the repeat length variability in 100 control subjects. A subset of 19 CNG loci observed to be highly variable in control subjects was selected for subsequent analysis in 100 individuals with SCA. The genes with these highly variable repeats also exhibited higher gene expression levels in the brain according to the tissue expression dataset (GTEx). No pathogenic expansion events were identified in patient samples, which is a limitation given the size of the patient group examined; however, these loci contain potential risk alleles for expandability. Recent studies have implicated GLS, RAI1, GIPC1, MED15, EP400, MEF2A, and CNKSR2 in neurological diseases, with GLS, GIPC1, MED15, RAI1, and MEF2A sharing the same repeat loci reported in this study. This finding validates the approach of evaluating repeat loci in different populations and their possible implications for human pathologies.
RESUMEN
Spinocerebellar Ataxia type-12 (SCA12) is a neurodegenerative disease caused by tandem CAG repeat expansion in the 5'-UTR/non-coding region of PPP2R2B. Molecular pathology of SCA12 has not been studied in the context of CAG repeats, and no appropriate models exist. We found in human SCA12-iPSC-derived neuronal lineage that expanded CAG in PPP2R2B transcript forms nuclear RNA foci and were found to sequester variety of proteins. Further, the ectopic expression of transcript containing varying length of CAG repeats exhibits non-canonical repeat-associated non-AUG (RAN) translation in multiple frames in HEK293T cells, which was further validated in patient-derived neural stem cells using specific antibodies. mRNA sequencing of the SCA12 and control neurons have shown a network of crucial transcription factors affecting neural fate, in addition to alteration of various signaling pathways involved in neurodevelopment. Altogether, this study identifies the molecular signatures of SCA12 disorder using patient-derived neuronal cell lines.
RESUMEN
Short Tandem Repeats (STRs) are genetic markers made up of repeating DNA sequences. The variations of the STRs are widely studied in forensic analysis, population studies and genetic testing for a variety of neuromuscular disorders. Understanding polymorphic STR variation and its cause is crucial for deciphering genetic information and finding links to various disorders. In this paper, we present STRIDE-DB, a novel and unique platform to explore STR Instability and its Phenotypic Relevance, and a comprehensive database of STRs in the human genome. We utilized RepeatMasker to identify all the STRs in the human genome (hg19) and combined it with frequency data from the 1000 Genomes Project. STRIDE-DB, a user-friendly resource, plays a pivotal role in investigating the relationship between STR variation, instability and phenotype. By harnessing data from genome-wide association studies (GWAS), ClinVar database, Alu loci, Haploblocks in genome and Conservation of the STRs, it serves as an important tool for researchers exploring the variability of STRs in the human genome and its direct impact on phenotypes. STRIDE-DB has its broad applicability and significance in various research domains like forensic sciences and other repeat expansion disorders. Database URL: https://stridedb.igib.res.in.
Asunto(s)
Genoma Humano , Estudio de Asociación del Genoma Completo , Humanos , Genoma Humano/genética , Fenotipo , Repeticiones de Microsatélite/genética , Bases de Datos FactualesRESUMEN
BACKGROUND: Amyotrophic lateral sclerosis (ALS) is an old onset devastating neurodegenerative disorder. Young-onset ALS cases especially sporadic ones who are between 25 and 45 years are rarely affected by the disease. Despite the identification of numerous candidate genes associated with ALS, the etiology of the disease remains elusive due to extreme genetic and phenotypic variability. The advent of affordable whole exome sequencing (WES) has opened new avenues for unraveling the disease's pathophysiology better. METHODS AND RESULTS: We aimed to determine the genetic basis of an Indian-origin, young onset sporadic ALS patient with very rapid deterioration of the disease course without any cognitive decline who was screened for mutations in major ALS candidate genes by WES. Variants detected were reconfirmed by Sanger sequencing. The clinicopathological features were investigated and two heterozygous missense variants were identified: R452W, not previously associated with ALS, present in one of the four conserved C terminal domains in ANXA11 and R208W in SIGMAR1, respectively. Both of these variants were predicted to be damaging by pathogenicity prediction tools and various in silico methods. CONCLUSION: Our study revealed two potentially pathogenic variants in two ALS candidate genes. The genetic makeup of ALS patients from India has been the subject of a few prior studies, but none of them examined ANXA11 and SIGMAR1 genes so far. These results establish the framework for additional research into the pathogenic processes behind these variations that result in sporadic ALS disease and further our understanding of the genetic makeup of Indian ALS patients.
Asunto(s)
Esclerosis Amiotrófica Lateral , Humanos , Esclerosis Amiotrófica Lateral/genética , Esclerosis Amiotrófica Lateral/epidemiología , Esclerosis Amiotrófica Lateral/diagnóstico , India/epidemiología , Adulto , Masculino , Secuenciación del Exoma , Edad de Inicio , Simulación por Computador , Mutación Missense/genética , FemeninoRESUMEN
Friedreich's ataxia is a spinocerebellar degenerative disease caused by microsatellite (GAA.TTC)n repeat expansion in the first intron of FXN gene. Here, we developed iPSC lines from an FRDA patient (IGIBi016-A) and non-FRDA healthy control (IGIBi017-A). Both iPSC lines displayed typical iPSC morphology, expression of pluripotency markers, regular karyotypes (46, XY; 46, XX), capacity to grow into three germ layers, and FRDA hallmark -GAA repeat expansion and decreased FXN mRNA. Through these iPSC lines, FRDA phenotypes may be replicated in the in vitro assays, by creating neuron subtypes, cardiomyocytes and 3D organoids, for molecular and cellular biomarkers and therapeutic applications.
Asunto(s)
Frataxina , Ataxia de Friedreich , Células Madre Pluripotentes Inducidas , Proteínas de Unión a Hierro , Humanos , Ataxia de Friedreich/genética , Ataxia de Friedreich/patología , Células Madre Pluripotentes Inducidas/metabolismo , Proteínas de Unión a Hierro/genética , Intrones , Expansión de Repetición de Trinucleótido , Masculino , Línea Celular , FemeninoRESUMEN
The PPP2R2B gene, expressed highly in the brain, harbours trinucleotide CAG repeats in the 5'UTR region, in the range of 7-42 repeats. Individuals carrying CAG repeats greater than 43 have been associated to manifest a neurodegenerative disease condition termed as Spinocerebellar Ataxia type 12 (SCA12). An iPSC line from an adult male diagnosed with SCA12 presenting symptoms of gait (Gait Dominance) was generated. It showed pluripotency and trilineage markers without any chromosomal abnormality. This line can be utilized as an essential resource in enhancing our understanding of the molecular pathogenic mechanisms underlying SCA12 by facilitating generation of various neuronal cell types.
Asunto(s)
Células Madre Pluripotentes Inducidas , Ataxias Espinocerebelosas , Adulto , Humanos , Masculino , Células Madre Pluripotentes Inducidas/metabolismo , Ataxias Espinocerebelosas/patología , Neuronas , Repeticiones de TrinucleótidosRESUMEN
Friedreich's ataxia is a neurodegenerative disorder caused by the hyper expansion of (GAA-TTC)n triplet repeats in the first intron of the FXN gene. Here, we generated iPSC lines from two individuals with FRDA, both of whom have homozygous GAA repeat expansion in the first intron of FXN gene. Both iPSC lines demonstrated characteristics of pluripotency, including expression of pluripotency markers, stable karyotypes and ability to develop into all three germ layers, and presence of GAA repeat expansion with reduced FXN mRNA expression. These iPSC lines will serve as invaluable tools for investigating the pathophysiology and phenotypes of FRDA.
Asunto(s)
Ataxia de Friedreich , Células Madre Pluripotentes Inducidas , Humanos , Células Madre Pluripotentes Inducidas/metabolismo , Ataxia de Friedreich/genética , Ataxia de Friedreich/metabolismo , Expansión de Repetición de Trinucleótido/genética , IntronesRESUMEN
BACKGROUND: Autosomal recessive spastic ataxia of Charlevoix-Saguenay (ARSACS), classically presenting as a triad of early-onset cerebellar ataxia, lower extremity spasticity and peripheral neuropathy, is caused by mutations in SACS gene which encodes the protein sacsin. OBJECTIVE: To provide new insight into the occurrence of SACS mutations in South India. METHODS: Patients with three cardinal features of ARSACS-peripheral neuropathy, cerebellar ataxia, and pyramidal tract signs were included. Nine patients were clinically identified and genetically evaluated. Mutation screening of SACS by targeted sequencing of 40 recessive ataxia genes panel by next-generation sequencing was conducted. Additional investigations included magnetic resonance imaging (MRI), fundoscopy, optical coherence tomography (OCT) and nerve conduction studies (NCS). Functional disability was assessed by the Spinocerebellar Degeneration Functional Score. RESULTS: Two hundred and fifteen cerebellar ataxia patients were screened, and 9 patients with cerebellar ataxia with spasticity, peripheral neuropathy and MRI brain characteristics, consistent with a clinical diagnosis of ARSACS were identified, of which 7 patients were identified to have mutation in the SACS gene and are detailed hereafter. Age of presentation ranged from 20 to 55 years (29.8 ± 11.9) with a mean disease duration of 12.7 years (SD-7.65, range 5-22 years). All except one had onset of symptoms in the form of an ataxic gait noticed before 20 years of age. Additional features were subnormal intelligence (4/7), slow and hypometric saccades (1/7), seizures (1/7), kyphoscoliosis (1/7) and dysmorphic facies (1/7). SDFS was 3 in 5/7 patients signifying moderate disability with independent ambulation. MRI showed cerebellar atrophy with predominant atrophy of the superior vermis (7/7), horizontal linear T2 hypointensities in the pons(7/7), hyperintensities where lateral pons merges with the middle cerebellar peduncle (MCP) (7/7) well seen in fluid-attenuated inversion recovery (FLAIR) images, thickening of MCP (3/7), symmetric lateral thalamic hyperintensities (6/7), posterior fossa arachnoid cyst (4/7),thinning of posterior mid-body of corpus callosum (7/7), marginal mineralisation of the basal ganglia (7/7), bilateral parietal atrophy (7/7) and thinning of corticospinal tract on diffusion tensor imaging (DTI) (7/7). We identified pathogenic homozygous frameshift mutations in the SACS gene in six patients (including two siblings), while one patient had a heterozygous pathogenic deletion. CONCLUSIONS: This is the largest series of genetically confirmed ARSACS patients from India highlighting the clinical, ophthalmological, imaging and genetic features of this cohort.
Asunto(s)
Ataxia Cerebelosa , Enfermedades del Sistema Nervioso Periférico , Ataxias Espinocerebelosas/congénito , Humanos , Adulto Joven , Adulto , Persona de Mediana Edad , Ataxia Cerebelosa/diagnóstico por imagen , Ataxia Cerebelosa/genética , Imagen de Difusión Tensora , Mutación/genética , Espasticidad Muscular/diagnóstico por imagen , Espasticidad Muscular/genética , AtrofiaRESUMEN
An intronic bi-allelic pentanucleotide repeat expansion mutation, (AAGGG)400-2000, at AAAAG repeat locus in RFC1 gene, is known as underlying genetic cause in cases with cerebellar ataxia, neuropathy, and vestibular areflexia syndrome (CANVAS) and late-onset sporadic ataxia. Biallelic positive cases carry a common recessive risk haplotype, "AAGA," spanning RFC1 gene. In this study, our aim is to find prevalence of bi-allelic (AAGGG)exp in Indian ataxia and other neurological disorders and investigate the complexity of RFC1 repeat locus and its potential association with neurodegenerative diseases in Indian population-based cohorts. We carried out repeat number and repeat type estimation using flanking PCR and repeat primed PCR (AAAAG/AAAGG/AAGGG) in four Indian disease cohorts and healthy controls. Haplotype assessment of suspected cases was done by genotyping and confirmed by Sanger sequencing. Blood samples and consent of all the cases and detailed clinical details of positive cases were collected in collaboration with A.I.I.M.S. Furthermore, comprehension of RFC1 repeat locus and risk haplotype analysis in Indian background was performed on the NGS data of Indian healthy controls by ExpansionHunter, ExpansionHunter Denovo, and PHASE analysis, respectively. Genetic screening of RFC1-TNR locus in 1998 uncharacterized cases (SCA12: 87; uncharacterized ataxia: 1818, CMT: 93) and 564 heterogenous controls showed that the frequency of subjects with bi-allelic (AAGGG)exp are 1.15%, < 0.05%, 2.15%, and 0% respectively. Two RFC1 positive sporadic late-onset ataxia cases, one bi-allelic (AAGGG)exp and another, (AAAGG)~700/(AAGGG)exp, had recessive risk haplotype and CANVAS symptoms. Long normal alleles, 15-27, are significantly rare in ataxia cohort. In IndiGen control population (IndiGen; N = 1029), long normal repeat range, 15-27, is significantly associated with A3G3 and some rare repeat motifs, AGAGG, AACGG, AAGAG, and AAGGC. Risk-associated "AAGA" haplotype of the original pathogenic expansion of A2G3 was found associated with the A3G3 representing alleles in background population. Apart from bi-allelic (AAGGG)exp, we report cases with a new pathogenic expansion of (AAAGG)exp/(AAGGG)exp in RFC1 and recessive risk haplotype. We found different repeat motifs at RFC1 TNR locus, like AAAAG, AAAGG, AAAGGG, AAAAGG, AAGAG, AACGG, AAGGC, AGAGG, and AAGGG, in Indian background population except ACAGG and (AAAGG)n/(AAGGG)n. Our findings will help in further understanding the role of long normal repeat size and different repeat motifs, specifically AAAGG, AAAGGG, and other rare repeat motifs, at the RFC1 locus.
Asunto(s)
Ataxia Cerebelosa , Enfermedades del Sistema Nervioso Periférico , Enfermedades Vestibulares , Humanos , Ataxia Cerebelosa/genética , Ataxia Cerebelosa/diagnóstico , AtaxiaRESUMEN
Friedreich's ataxia (FRDA) is a rare neurodegenerativedisorder caused by over expansion of GAA repeats in thefirstintron ofFXN gene. Here, we generated two iPSC lines from FRDA patients with biallelic expansion of GAA repeats in the first intron ofFXNgene.IGIBi014-A and IGIBi015-Aboth iPSC lines demonstrated characteristics of pluripotency, normal karyotypes (46, XY),the capacity to differentiate into all three germ layers, and the ability to sustain the GAA repeat expansion with decreased FXN mRNA expression. These cell lines will be utilized to comprehend the pathophysiology of the illness and the FRDA's predictive phenotypes.