Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
Más filtros













Base de datos
Intervalo de año de publicación
1.
Molecules ; 29(11)2024 May 27.
Artículo en Inglés | MEDLINE | ID: mdl-38893400

RESUMEN

The outbreak of SARS-CoV-2, also known as the COVID-19 pandemic, is still a critical risk factor for both human life and the global economy. Although, several promising therapies have been introduced in the literature to inhibit SARS-CoV-2, most of them are synthetic drugs that may have some adverse effects on the human body. Therefore, the main objective of this study was to carry out an in-silico investigation into the medicinal properties of Petiveria alliacea L. (P. alliacea L.)-mediated phytocompounds for the treatment of SARS-CoV-2 infections since phytochemicals have fewer adverse effects compared to synthetic drugs. To explore potential phytocompounds from P. alliacea L. as candidate drug molecules, we selected the infection-causing main protease (Mpro) of SARS-CoV-2 as the receptor protein. The molecular docking analysis of these receptor proteins with the different phytocompounds of P. alliacea L. was performed using AutoDock Vina. Then, we selected the three top-ranked phytocompounds (myricitrin, engeletin, and astilbin) as the candidate drug molecules based on their highest binding affinity scores of -8.9, -8.7 and -8.3 (Kcal/mol), respectively. Then, a 100 ns molecular dynamics (MD) simulation study was performed for their complexes with Mpro using YASARA software, computed RMSD, RMSF, PCA, DCCM, MM/PBSA, and free energy landscape (FEL), and found their almost stable binding performance. In addition, biological activity, ADME/T, DFT, and drug-likeness analyses exhibited the suitable pharmacokinetics properties of the selected phytocompounds. Therefore, the results of this study might be a useful resource for formulating a safe treatment plan for SARS-CoV-2 infections after experimental validation in wet-lab and clinical trials.


Asunto(s)
Antivirales , Tratamiento Farmacológico de COVID-19 , Proteasas 3C de Coronavirus , Simulación del Acoplamiento Molecular , Simulación de Dinámica Molecular , Fitoquímicos , SARS-CoV-2 , Fitoquímicos/farmacología , Fitoquímicos/química , Fitoquímicos/uso terapéutico , SARS-CoV-2/efectos de los fármacos , SARS-CoV-2/enzimología , Proteasas 3C de Coronavirus/antagonistas & inhibidores , Proteasas 3C de Coronavirus/metabolismo , Proteasas 3C de Coronavirus/química , Antivirales/farmacología , Antivirales/química , Antivirales/uso terapéutico , Humanos , Inhibidores de Proteasas/farmacología , Inhibidores de Proteasas/química , Inhibidores de Proteasas/uso terapéutico , COVID-19/virología , Extractos Vegetales/química , Extractos Vegetales/farmacología , Extractos Vegetales/uso terapéutico
3.
Med Chem ; 2024 Apr 24.
Artículo en Inglés | MEDLINE | ID: mdl-38659270

RESUMEN

INTRODUCTION: Inflammatory Bowel Disease (IBD) encompasses a group of chronic disorders distinguished by inflammation of the gastrointestinal tract. Among these, Crohn's Disease (CD) stands out as a complex and impactful condition due to challenges for both diagnosis and management, making it a cynosure of research. METHOD: In CD, there is the predominance of proinflammatory bacteria, including the Adherentinvasive Escherichia coli (AIEC) with virulence-associated metabolic enzyme Propanediol Dehydratase (pduC), which has been identified as a therapeutic target for the management of CD. Herein, molecular modeling techniques, including molecular docking, Molecular Mechanics with Generalized Born and Surface Area (MMGBSA), drug-likeness, and pharmacokinetics profiling, were utilized to probe the potentials of eighty antibacterial compounds to serve as inhibitors of pduC. RESULT: The results of this study led to the identification of five compounds with promising potentials; the results of the molecular docking simulation revealed the compounds as possessing better binding affinities for the target compared to the standard drug (sulfasalazine), while Lipinski's rule of five-based assessment of their drug-likeness properties revealed them as potential oral drugs. MMGBSA free energy calculation and Molecular Dynamics (MD) simulation of the complexes formed a sequel to molecular docking, revealing the compounds as stable binders in the active site of the protein. CONCLUSION: Ultimately, the results of this study have revealed five compounds to possess the potential to serve as inhibitors of pduC of AIEC. However, experimental studies are still needed to validate the findings of this study.

4.
Pharmaceutics ; 16(4)2024 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-38675143

RESUMEN

Diabetes, characterized by elevated blood sugar levels, poses significant health and economic risks, correlating with complications like cardiovascular disease, kidney failure, and blindness. Dipeptidyl peptidase-4 (DPP-4), also referred to as T-cell activation antigen CD26 (EC 3.4.14.5.), plays a crucial role in glucose metabolism and immune function. Inhibiting DPP-4 was anticipated as a potential new therapy for diabetes. Therefore, identification of plant-based natural inhibitors of DPP-4 would help in eradicating diabetes worldwide. Here, for the identification of the potential natural inhibitors of DPP-4, we developed a phytochemicals library consisting of over 6000 phytochemicals detected in 81 medicinal plants that exhibited anti-diabetic potency. The library has been docked against the target proteins, where isorhamnetin, Benzyl 5-Amino-5-deoxy-2,3-O-isopropyl-alpha-D-mannofuranoside (DTXSID90724586), and 5-Oxo-7-[4-(trifluoromethyl) phenyl]-4H,6H,7H-[1,2]thiazolo[4,5-b]pyridine 3-carboxylic acid (CHEMBL3446108) showed binding affinities of -8.5, -8.3, and -8.3 kcal/mol, respectively. These compounds exhibiting strong interactions with DPP-4 active sites (Glu205, Glu206, Tyr547, Trp629, Ser630, Tyr662, His740) were identified. ADME/T and bioactivity predictions affirmed their pharmacological safety. Density functional theory calculations assessed stability and reactivity, while molecular dynamics simulations demonstrated persistent stability. Analyzing parameters like RMSD, RG, RMSF, SASA, H-bonds, MM-PBSA, and FEL confirmed stable protein-ligand compound formation. Principal component analysis provided structural variation insights. Our findings suggest that those compounds might be possible candidates for developing novel inhibitors targeting DPP-4 for treating diabetes.

5.
Arch Microbiol ; 206(4): 190, 2024 Mar 23.
Artículo en Inglés | MEDLINE | ID: mdl-38519821

RESUMEN

Owing to the extensive prevalence of resistant bacteria to numerous antibiotic classes, antimicrobial resistance (AMR) poses a well-known hazard to world health. As an alternate approach in the field of antimicrobial drug discovery, repurposing the available medications which are also called antibiotic resistance breakers has been pursued for the treatment of infections with antimicrobial resistance pathogens. In this study, we used Haloperidol, Metformin and Hydroxychloroquine as repurposing drugs in in vitro (Antibacterial Antibiotic Sensitivity Test and Minimum Inhibitory Concentration-MIC) and in vivo (Shigellosis in Swiss albino mice) tests in combination with traditional antibiotics (Oxytetracycline, Erythromycin, Doxycycline, Gentamicin, Ampicillin, Chloramphenicol, and Penicillin) against a group of AMR resistance bacteria (Bacillus cereus, Escherichia coli, Pseudomonas aeruginosa, Staphylococcus aureus, and Shigella boydii). After observing the results of the conducted in vitro experiments we studied the effects of the above non antibiotic drugs in combination with the said antibiotics. As an repurposing adjuvant antibiotic drug, Metformin exhibited noteworthy activity in almost all in vitro, in vivo and in silico tests (Zone of inhibition for 30 to 43 mm for E.coli in combination with Doxycycline; MIC value decreased 50 µM to 0.781 µM with Doxycycline on S. boydii).In rodents Doxycycline and Metformin showed prominent against Shigellosis in White blood cell count (6.47 ± 0.152 thousand/mm3) and Erythrocyte sedimentation rate (10.5 ± 1.73 mm/hr). Our findings indicated that Metformin and Doxycycline combination has a crucial impact on Shigellosis. The molecular docking study was performed targeting the Acriflavine resistance protein B (AcrB) (PDB ID: 4CDI) and MexA protein (PDB ID: 6IOK) protein with Metformin (met8) drug which showed the highest binding energy with - 6.4 kcal/mol and - 5.5 kcal/mol respectively. Further, molecular dynamics simulation revealed that the docked complexes were relatively stable during the 100 ns simulation period. This study suggest Metformin and other experimented drugs can be used as adjuvants boost up antibiosis but further study is needed to find out the safety and efficacy of this non-antibiotic drug as potent antibiotic adjuvant.


Asunto(s)
Disentería Bacilar , Metformina , Animales , Ratones , Antibacterianos/farmacología , Simulación del Acoplamiento Molecular , Doxiciclina/farmacología , Metformina/farmacología , Reposicionamiento de Medicamentos , Bacterias , Pruebas de Sensibilidad Microbiana
6.
Front Chem ; 11: 1273408, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-38075499

RESUMEN

An excessive amount of multidrug-resistant Staphylococcus aureus is commonly associated with actinic keratosis (AK) and squamous cell carcinoma (SCC) by secreted virulence products that induced the chronic inflammation leading to skin cancer which is regulated by staphylococcal accessory regulator (SarA). It is worth noting that there is currently no existing published study that reports on the inhibitory activity of phytochemicals derived from Santalum album on the SarA protein through in silico approach. Therefore, our study has been designed to find the potential inhibitors of S. aureus SarA protein from S. album-derived phytochemicals. The molecular docking study was performed targeting the SarA protein of S. aureus, and CID:5280441, CID:162350, and CID: 5281675 compounds showed the highest binding energy with -9.4 kcal/mol, -9.0 kcal/mol, and -8.6 kcal/mol respectively. Further, molecular dynamics simulation revealed that the docked complexes were relatively stable during the 100 ns simulation period whereas the MMPBSA binding free energy proposed that the ligands were sustained with their binding site. All three complexes were found to be similar in distribution with the apoprotein through PCA analysis indicating conformational stability throughout the MD simulation. Moreover, all three compounds' ADMET profiles revealed positive results, and the AMES test did not show any toxicity whereas the pharmacophore study also indicates a closer match between the pharmacophore model and the compounds. After comprehensive in silico studies we evolved three best compounds, namely, Vitexin, Isovitexin, and Orientin, which were conducted in vitro assay for further confirmation of their inhibitory activity and results exhibited all of these compounds showed strong inhibitory activity against S. aureus. The overall result suggests that these compounds could be used as a natural lead to inhibit the pathogenesis of S. aureus and antibiotic therapy for S. aureus-associated skin cancer in humans as well.

7.
Int J Alzheimers Dis ; 2023: 8877757, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37744007

RESUMEN

Alzheimer's disease (AD) is a serious threat to the global health care system and is brought on by a series of factors that cause neuronal dysfunction and impairment in memory and cognitive decline. This study investigated the therapeutic potential of phytochemicals that belong to the ten regularly used spice plants, based on their binding affinity with AD-associated proteins. Comprehensive docking studies were performed using AutoDock Vina in PyRx followed by molecular dynamic (MD) simulations using AMBER 14. The docking study of the chosen molecules revealed the binding energies of their interactions with the target proteins, while MD simulations were carried out to verify the steadiness of bound complexes. Through the Lipinski filter and admetSAR analysis, the chosen compounds' pharmacokinetic characteristics and drug likeness were also examined. The pharmacophore mapping study was also done and analyzed for best selected molecules. Additionally, principal component analysis (PCA) was used to examine how the general motion of the protein changed. The results showed quercetin and myricetin to be potential inhibitors of AChE and alpha-amyrin and beta-chlorogenin to be potential inhibitors of BuChE, exhibiting best binding energies comparable to those of donepezil, used as a positive control. The multiple descriptors from the simulation study, root mean square deviation (RMSD), root mean square fluctuation (RMSF), hydrogen bond, radius of gyration (Rg), and solvent-accessible surface areas (SASA), confirm the stable nature of the protein-ligand complexes. Molecular mechanic Poisson-Boltzmann surface area (MM-PBSA) binding free energy calculations indicated the energetically favorable binding of the ligands to the protein. Finally, according to pharmacokinetic properties and drug likeness, characteristics showed that quercetin and myricetin for AChE and alpha-amyrin and beta-chlorogenin for BuChE were found to be the most effective agents for treating the AD.

8.
Biomed Res Int ; 2023: 1946703, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37359050

RESUMEN

Acute myeloid leukemia (AML) is a blood cancer caused by the abnormal proliferation and differentiation of hematopoietic stem cells in the bone marrow. The actual genetic markers and molecular mechanisms of AML prognosis are unclear till today. This study used bioinformatics approaches for identifying hub genes and pathways associated with AML development to uncover potential molecular mechanisms. The expression profiles of RNA-Seq datasets, GSE68925 and GSE183817, were retrieved from the Gene Expression Omnibus (GEO) database. These two datasets were analyzed by GREIN to obtain differentially expressed genes (DEGs), which were used for performing the Gene Ontology (GO), Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway, protein-protein interaction (PPI), and survival analysis. The molecular docking and dynamic simulation were performed to identify the most effective drug/s for AML from the drug list approved by the Food and Drug Administration (FDA). By integrating the two datasets, 238 DEGs were identified as likely to be affected by AML progression. GO enrichment analyses exhibited that the upregulated genes were mainly associated with inflammatory response (BP) and extracellular region (CC). The downregulated DEGs were involved in the T-cell receptor signalling pathway (BP), an integral component of the lumenal side of the endoplasmic reticulum membrane (CC) and peptide antigen binding (MF). The pathway enrichment analysis showed that the upregulated DEGs were mainly associated with the T-cell receptor signalling pathway. Among the top 15 hub genes, the expression levels of ALDH1A1 and CFD were associated with the prognosis of AML. Four FDA-approved drugs were selected, and a top-ranked drug was identified for each biomarker through molecular docking studies. The top-ranked drugs were further confirmed by molecular dynamic simulation that revealed their binding stability and confirmed their stable performance. Therefore, the drug compounds, enasidenib and gilteritinib, can be recommended as the most effective drugs against the ALDH1A1 and CFD proteins, respectively.


Asunto(s)
Perfilación de la Expresión Génica , Leucemia Mieloide Aguda , Estados Unidos , Humanos , Simulación del Acoplamiento Molecular , Pronóstico , Preparaciones Farmacéuticas , United States Food and Drug Administration , Biomarcadores , Leucemia Mieloide Aguda/tratamiento farmacológico , Leucemia Mieloide Aguda/genética , Receptores de Antígenos de Linfocitos T/genética , Biología Computacional , Biomarcadores de Tumor/genética , Biomarcadores de Tumor/metabolismo
9.
In Silico Pharmacol ; 11(1): 14, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37255739

RESUMEN

The tea plant (Camellia sinensis) belongs to the family Theaceae and contains many phytochemicals that are effective against various diseases, including neurodegenerative disorders. In this study, we aimed to characterize the phytochemicals present in the methanolic and n-hexane leaf extracts of C. sinensis using GC-MS, FTIR, and UV-visible analysis. We detected a total of 19 compounds of different chemical classes. We also performed molecular docking studies using the GC-MS detected phytochemicals, targeting acetylcholinesterase (AChE, PBD ID: 4BDT) and butyrylcholinesterase (BChE, PDB ID: 6QAB), which are responsible for the breakdown of the neurotransmitter acetylcholine (ACh). This breakdown leads to dementia and cognitive decline in Alzheimer's patients. The compounds Ergosta-7,22-dien-3-ol, (3.beta.,5.alpha.,22E)- and Benzene, 1,3-bis(1,1-dimethylethyl) showed better binding affinity against AChE, while dl-.alpha.-Tocopherol and Ergosta-7,22-dien-3-ol, (3.beta.,5.alpha.,22E)- showed better binding affinity against BChE. We determined the stability and rigidity of these best docked complexes through molecular dynamics simulation for a period of 100 ns. All complexes showed stability in terms of SASA, Rg, and hydrogen bonds, but some variations were found in the RMSD values. Our ADMET analysis revealed that all lead compounds are non-toxic. Therefore, these compounds could be potential inhibitors of AChE and BChE.

10.
Comput Biol Med ; 157: 106785, 2023 05.
Artículo en Inglés | MEDLINE | ID: mdl-36931201

RESUMEN

Highly transmissive and rapidly evolving Coronavirus disease-2019 (COVID-19), a viral disease caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), triggered a global pandemic, which is one of the most researched viruses in the academia. Effective drugs to treat people with COVID-19 have yet to be developed to reduce mortality and transmission. Studies on the SARS-CoV-2 virus identified that its main protease (Mpro) might be a potential therapeutic target for drug development, as this enzyme plays a key role in viral replication. In search of potential inhibitors of Mpro, we developed a phytochemical library consisting of 2431 phytochemicals from 104 Korean medicinal plants that exhibited medicinal and antioxidant properties. The library was screened by molecular docking, followed by revalidation by re-screening with a deep learning method. Recurrent Neural Networks (RNN) computing system was used to develop an inhibitory predictive model using SARS coronavirus Mpro dataset. It was deployed to screen the top 12 compounds based on their docked binding affinity that ranged from -8.0 to -8.9 kcal/mol. The top two lead compounds, Catechin gallate and Quercetin 3-O-malonylglucoside, were selected depending on inhibitory potency against Mpro. Interactions with the target protein active sites, including His41, Met49, Cys145, Met165, and Thr190 were also examined. Molecular dynamics simulation was performed to analyze root mean square deviation (RMSD), root mean square fluctuation (RMSF), radius of gyration (RG), solvent accessible surface area (SASA), and number of hydrogen bonds. Results confirmed the inflexible nature of the docked complexes. Absorption, distribution, metabolism, excretion, and toxicity (ADMET), as well as bioactivity prediction confirmed the pharmaceutical activities of the lead compound. Findings of this research might help scientists to optimize compatible drugs for the treatment of COVID-19 patients.


Asunto(s)
COVID-19 , Aprendizaje Profundo , Plantas Medicinales , Humanos , Simulación del Acoplamiento Molecular , SARS-CoV-2 , Inhibidores de Proteasas/farmacología , Simulación de Dinámica Molecular
11.
Cancers (Basel) ; 15(5)2023 Feb 21.
Artículo en Inglés | MEDLINE | ID: mdl-36900162

RESUMEN

Colorectal cancer (CRC) is one of the most common cancers with a high mortality rate. Early diagnosis and therapies for CRC may reduce the mortality rate. However, so far, no researchers have yet investigated core genes (CGs) rigorously for early diagnosis, prognosis, and therapies of CRC. Therefore, an attempt was made in this study to explore CRC-related CGs for early diagnosis, prognosis, and therapies. At first, we identified 252 common differentially expressed genes (cDEGs) between CRC and control samples based on three gene-expression datasets. Then, we identified ten cDEGs (AURKA, TOP2A, CDK1, PTTG1, CDKN3, CDC20, MAD2L1, CKS2, MELK, and TPX2) as the CGs, highlighting their mechanisms in CRC progression. The enrichment analysis of CGs with GO terms and KEGG pathways revealed some crucial biological processes, molecular functions, and signaling pathways that are associated with CRC progression. The survival probability curves and box-plot analyses with the expressions of CGs in different stages of CRC indicated their strong prognostic performance from the earlier stage of the disease. Then, we detected CGs-guided seven candidate drugs (Manzamine A, Cardidigin, Staurosporine, Sitosterol, Benzo[a]pyrene, Nocardiopsis sp., and Riccardin D) by molecular docking. Finally, the binding stability of four top-ranked complexes (TPX2 vs. Manzamine A, CDC20 vs. Cardidigin, MELK vs. Staurosporine, and CDK1 vs. Riccardin D) was investigated by using 100 ns molecular dynamics simulation studies, and their stable performance was observed. Therefore, the output of this study may play a vital role in developing a proper treatment plan at the earlier stages of CRC.

12.
Comput Biol Med ; 152: 106411, 2023 01.
Artículo en Inglés | MEDLINE | ID: mdl-36502691

RESUMEN

Pancreatic cancer (PC) is one of the leading causes of cancer-related death globally. So, identification of potential molecular signatures is required for diagnosis, prognosis, and therapies of PC. In this study, we detected 71 common differentially expressed genes (cDEGs) between PC and control samples from four microarray gene-expression datasets (GSE15471, GSE16515, GSE71989, and GSE22780) by using robust statistical and machine learning approaches, since microarray gene-expression datasets are often contaminated by outliers due to several steps involved in the data generating processes. Then we detected 8 cDEGs (ADAM10, COL1A2, FN1, P4HB, ITGB1, ITGB5, ANXA2, and MYOF) as the PC-causing key genes (KGs) by the protein-protein interaction (PPI) network analysis. We validated the expression patterns of KGs between case and control samples by box plot analysis with the TCGA and GTEx databases. The proposed KGs showed high prognostic power with the random forest (RF) based prediction model and Kaplan-Meier-based survival probability curve. The KGs regulatory network analysis detected few transcriptional and post-transcriptional regulators for KGs. The cDEGs-set enrichment analysis revealed some crucial PC-causing molecular functions, biological processes, cellular components, and pathways that are associated with KGs. Finally, we suggested KGs-guided five repurposable drug molecules (Linsitinib, CX5461, Irinotecan, Timosaponin AIII, and Olaparib) and a new molecule (NVP-BHG712) against PC by molecular docking. The stability of the top three protein-ligand complexes was confirmed by molecular dynamic (MD) simulation studies. The cross-validation and some literature reviews also supported our findings. Therefore, the finding of this study might be useful resources to the researchers and medical doctors for diagnosis, prognosis and therapies of PC by the wet-lab validation.


Asunto(s)
Neoplasias Pancreáticas , Transcriptoma , Humanos , Perfilación de la Expresión Génica , Simulación del Acoplamiento Molecular , Neoplasias Pancreáticas/diagnóstico , Neoplasias Pancreáticas/tratamiento farmacológico , Neoplasias Pancreáticas/genética , Biomarcadores de Tumor/genética , Genómica , Regulación Neoplásica de la Expresión Génica , Biología Computacional , Neoplasias Pancreáticas
13.
Front Mol Biosci ; 10: 1278701, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-38601799

RESUMEN

Adenanthera pavonina is a medicinal plant with numerous potential secondary metabolites showing a significant level of antidiabetic activity. The objective of the current study was to identify potential phytochemicals from the methanolic leaf extract of Adenanthera pavonina as therapeutic agents against diabetes mellitus using GC-MS and in silico methods. The GC-MS analysis of the leaf extract revealed a total of 17 phytochemicals. Molecular docking was performed using these phytochemicals, targeting the mutated insulin receptor tyrosine kinase (5hhw), which inhibits glucose uptake by cells. Diazoprogesterone (-9.2 kcal/mol), 2,4,4,7a-Tetramethyl-1-(3-oxobutyl)octahydro-1H-indene-2-carboxylic acid (-6.9 kcal/mol), and 2-Naphthalenemethanol, decahydro-.alpha.,.alpha.,4a-trimethyl-8-methylene-, [2R-(2.alpha.,4a.alpha.,8a.beta.)] (-6.6 kcal/mol) exhibited better binding with the target protein. The ADMET analysis was performed for the top three compounds with the best docking scores, which showed positive results with no observed toxicity in the AMES test. Furthermore, the molecular dynamics study confirmed the favorable binding of Diazoprogesterone, 2,4,4,7a-Tetramethyl-1-(3-oxobutyl)octahydro-1H-indene-2-carboxylic acid and 2-Naphthalenemethanol, decahydro-.alpha.,.alpha.,4a-trimethyl-8-methylene-, [2R-(2.alpha.,4a.alpha.,8a.beta.)] with the receptor throughout the 100 ns simulation period.

14.
Comput Biol Med ; 138: 104891, 2021 11.
Artículo en Inglés | MEDLINE | ID: mdl-34624759

RESUMEN

The coronavirus disease 2019 (COVID-19) is caused by the infection of highly contagious severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), also known as the novel coronavirus. In most countries, the containment of this virus spread is not controlled, which is driving the pandemic towards a more difficult phase. In this study, we investigated the impact of the Bacille Calmette Guerin (BCG) vaccination on the severity and mortality of COVID-19 by performing transcriptomic analyses of SARS-CoV-2 infected and BCG vaccinated samples in peripheral blood mononuclear cells (PBMC). A set of common differentially expressed genes (DEGs) were identified and seeded into their functional enrichment analyses via Gene Ontology (GO)-based functional terms and pre-annotated molecular pathways databases, and their Protein-Protein Interaction (PPI) network analysis. We further analysed the regulatory elements, possible comorbidities and putative drug candidates for COVID-19 patients who have not been BCG-vaccinated. Differential expression analyses of both BCG-vaccinated and COVID-19 infected samples identified 62 shared DEGs indicating their discordant expression pattern in their respected conditions compared to control. Next, PPI analysis of those DEGs revealed 10 hub genes, namely ITGB2, CXCL8, CXCL1, CCR2, IFNG, CCL4, PTGS2, ADORA3, TLR5 and CD33. Functional enrichment analyses found significantly enriched pathways/GO terms including cytokine activities, lysosome, IL-17 signalling pathway, TNF-signalling pathways. Moreover, a set of identified TFs, miRNAs and potential drug molecules were further investigated to assess their biological involvements in COVID-19 and their therapeutic possibilities. Findings showed significant genetic interactions between BCG vaccination and SARS-CoV-2 infection, suggesting an interesting prospect of the BCG vaccine in relation to the COVID-19 pandemic. We hope it may potentially trigger further research on this critical phenomenon to combat COVID-19 spread.


Asunto(s)
Vacuna BCG , COVID-19 , Humanos , Leucocitos Mononucleares , Pandemias , SARS-CoV-2 , Vacunación
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA