Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 18 de 18
Filtrar
Más filtros













Base de datos
Intervalo de año de publicación
1.
Nat Commun ; 15(1): 1398, 2024 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-38360729

RESUMEN

We investigate experimentally and theoretically a system ruled by an intricate interplay between topology, nonlinearity, and spontaneous symmetry breaking. The experiment is based on a two-mode coherently-driven optical resonator where photons interact through the Kerr nonlinearity. In presence of a phase defect, the modal structure acquires a synthetic Möbius topology enabling the realization of spontaneous symmetry breaking in inherently bias-free conditions without fine tuning of parameters. Rigorous statistical tests confirm the robustness of the underlying symmetry protection, which manifests itself by a periodic alternation of the modes reminiscent of period-doubling. This dynamic also confers long term stability to various localized structures including domain walls, solitons, and breathers. Our findings are supported by an effective Hamiltonian model and have relevance to other systems of interacting bosons and to the Floquet engineering of quantum matter. They could also be beneficial to the implementation of coherent Ising machines.

2.
Opt Lett ; 48(14): 3741-3744, 2023 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-37450739

RESUMEN

We demonstrate an all-optical random number generator based on spontaneous symmetry breaking in a coherently driven Kerr resonator. Random bit sequences are generated by repeatedly tuning a control parameter across a symmetry-breaking bifurcation that enacts random selection between two possible steady-states of the system. Experiments are performed in a fiber ring resonator, where the two symmetry-broken steady-states are associated with orthogonal polarization modes. Detrimental biases due to system asymmetries are suppressed by leveraging a recently discovered self-symmetrization phenomenon that ensures the symmetry-breaking dynamics act as an unbiased coin toss, with a genuinely random selection between the two available steady-states. We optically generate bits at a rate of 3 MHz without post-processing and verify their randomness using the National Institute of Standards and Technology and Dieharder statistical test suites.

3.
Opt Lett ; 47(6): 1486-1489, 2022 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-35290345

RESUMEN

We investigate theoretically and experimentally the instabilities of symmetry-broken, vectorial, bright cavity solitons (CSs) of two-mode nonlinear passive Kerr resonators. Through comprehensive theoretical analyses of coupled Lugiato-Lefever equations, we identify two different breathing regimes where the two components of the vectorial CSs breathe respectively in-phase and out-of-phase. Moreover, we find that deep out-of-phase breathing can lead to intermittent self-switching of the two components, spontaneously transforming a soliton into its mirror-symmetric state. In this process, solitons are also sometimes observed to decay. All our theoretical predictions are confirmed in experiments performed in an optical fiber ring resonator, where CS symmetry breaking occurs across the polarization modes of the resonator. To the best of our knowledge, our study constitutes the first experimental report of breathing instabilities of multi-component optical solitons of driven nonlinear resonators.

4.
Nat Commun ; 12(1): 4023, 2021 Jun 29.
Artículo en Inglés | MEDLINE | ID: mdl-34188030

RESUMEN

Dissipative solitons are self-localized structures that can persist indefinitely in open systems driven out of equilibrium. They play a key role in photonics, underpinning technologies from mode-locked lasers to microresonator optical frequency combs. Here we report on experimental observations of spontaneous symmetry breaking of dissipative optical solitons. Our experiments are performed in a nonlinear optical ring resonator, where dissipative solitons arise in the form of persisting pulses of light known as Kerr cavity solitons. We engineer symmetry between two orthogonal polarization modes of the resonator and show that the solitons of the system can spontaneously break this symmetry, giving rise to two distinct but co-existing vectorial solitons with mirror-like, asymmetric polarization states. We also show that judiciously applied perturbations allow for deterministic switching between the two symmetry-broken dissipative soliton states. Our work delivers fundamental insights at the intersection of multi-mode nonlinear optical resonators, dissipative structures, and spontaneous symmetry breaking, and expands upon our understanding of dissipative solitons in coherently driven Kerr resonators.

5.
Opt Lett ; 46(3): 512-515, 2021 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-33528397

RESUMEN

Kerr microresonators driven in the normal dispersion regime typically require the presence of localized dispersion perturbations, such as those induced by avoided mode crossings, to initiate the formation of optical frequency combs. In this work, we experimentally demonstrate that this requirement can be lifted by driving the resonator with a pulsed pump source. We also show that controlling the desynchronization between the pump repetition rate and the cavity free-spectral range (FSR) provides a simple mechanism to tune the center frequency of the output comb. Using a fiber mini-resonator with a radius of only 6 cm, we experimentally present spectrally flat combs with a bandwidth of 3 THz whose center frequency can be tuned by more than 2 THz. By driving the cavity at harmonics of its 0.54 GHz FSR, we are able to generate combs with line spacings selectable between 0.54 and 10.8 GHz. The ability to tune both the center frequency and frequency spacing of the output comb highlights the flexibility of this platform. Additionally, we demonstrate that under conditions of large pump-cavity desynchronization, the same cavity also supports a new, to the best of our knowledge, form of Raman-assisted anomalous dispersion cavity soliton.

6.
Phys Rev Lett ; 126(2): 023904, 2021 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-33512212

RESUMEN

Using a passive, coherently driven nonlinear optical fiber ring resonator, we report the experimental realization of dissipative polarization domain walls. The domain walls arise through a symmetry breaking bifurcation and consist of temporally localized structures where the amplitudes of the two polarization modes of the resonator interchange, segregating domains of orthogonal polarization states. We show that dissipative polarization domain walls can persist in the resonator without changing shape. We also demonstrate on-demand excitation, as well as pinning of domain walls at specific positions for arbitrary long times. Our results could prove useful for the analog simulation of ubiquitous domain-wall related phenomena, and pave the way to an all-optical buffer adapted to the transmission of topological bits.

7.
Opt Lett ; 45(18): 5069-5072, 2020 Sep 15.
Artículo en Inglés | MEDLINE | ID: mdl-32932455

RESUMEN

We report on the experimental and numerical observation of polarization modulation instability (PMI) in a nonlinear fiber Kerr resonator. This phenomenon is phased-matched through the relative phase detuning between the intracavity fields associated with the two principal polarization modes of the cavity. Our experimental investigation is based on a 12 m long fiber ring resonator in which a polarization controller is inserted to finely control the level of intracavity birefringence. Depending on the amount of birefringence, the temporal patterns generated via PMI are found to be either stationary or to exhibit a period-doubled dynamics. The experimental results are in good agreement with numerical simulations based on an Ikeda map for the two orthogonally polarized modes. This Letter provides new insights into the control of modulation instability in multimode Kerr resonators.

8.
Opt Lett ; 43(12): 2864-2867, 2018 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-29905709

RESUMEN

Simple photonic fiber-based workbenches have been able to emulate well-known nonlinear wave dynamics occurring in deep or shallow water conditions. Here, by investigating the nonlinear reshaping of a flat-top pulse upon propagation in an anomalous dispersive optical fiber, we observe that typical signatures of focusing dam break flows and Peregrine-like breather events can locally coexist in spontaneous pattern formations. The experimental measurements are in good agreement with our numerical predictions.

9.
Opt Lett ; 42(15): 2902-2905, 2017 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-28957203

RESUMEN

We propose and experimentally demonstrate a new approach to dramatically reduce the spectral broadening induced by self-phase modulation occurring in a Kerr medium. By using a temporal sinusoidal phase modulation, we efficiently cancel to a large extent the chirp induced by the nonlinear effect. Experimental validation carried out in a passive or amplifying fiber confirms the interest of the technique for the mitigation of the spectral expansion of long pulses.

10.
Opt Lett ; 41(6): 1110-3, 2016 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-26977646

RESUMEN

We theoretically and experimentally investigate the design of a high-repetition rate source delivering well-separated optical pulses due to the nonlinear compression of a dual-frequency beat signal within a cavity-less normally dispersive fiber-based setup. This system is well described by a set of two coupled nonlinear Schrödinger equations for which the traditional normally dispersive defocusing regime is turned in a focusing temporal lens through a degenerated cross-phase modulation process (XPM). More precisely, the temporal compression of the initial beating is performed by the combined effects of normal dispersion and XPM-induced nonlinear phase shift provided by an intense beat signal on its weak out-of-phase replica co-propagating with orthogonal polarizations. This adiabatic reshaping process allows us to experimentally demonstrate the generation of a 40 GHz well-separated 3.3 ps pulse train at 1550 nm in a 5 km long normally dispersive fiber.

11.
Opt Lett ; 39(18): 5309-12, 2014 Sep 15.
Artículo en Inglés | MEDLINE | ID: mdl-26466258

RESUMEN

We propose and analyze a novel all-optical fiber polarization scrambler based on the transfer (via the Kerr effect) of the intensity fluctuations of an incoherent pump beam into polarization fluctuations of a frequency-shifted signal beam, copropagating in a randomly birefringent telecom fiber. Optimal signal polarization scrambling results whenever the input signal and pump beams have nearly orthogonal states of polarization. The nonlinear polarization scrambler may operate on either cw or high-bit-rate pulsed signals.

12.
Opt Lett ; 38(24): 5361-4, 2013 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-24322258

RESUMEN

We experimentally study the dynamics of the generation of multiple sidebands by means of a quasi-phase-matched four-wave mixing (FWM) process occurring in a dispersion-oscillating, highly nonlinear optical fiber. The fiber under test is pumped by a ns microchip laser operating in the normal average group-velocity dispersion regime and in the telecom C band. We reveal that the growth of higher-order sidebands is strongly influenced by the competition with cascade FWM between the pump and the first-order quasi-phase matched sidebands. The properties of these competing FWM processes are substantially affected when a partially coherent pump source is used, leading to a drastic reduction of the average power needed for sideband generation.

13.
Opt Lett ; 38(19): 3899-902, 2013 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-24081083

RESUMEN

We experimentally investigate the nonlinear reshaping of a continuous wave that leads to chirp-free and flat-top intense pulses or flaticons exhibiting strong temporal oscillations at their edges and a stable self-similar expansion upon propagation of their central region. This study was performed in the normal dispersion regime of a nonzero dispersion-shifted fiber and involved a sinusoidal phase modulation of the continuous wave. Our fiber optics experiment is analogous to considering the collision between oppositely directed currents near the beach, and it may open the way to new investigations in the field of hydrodynamics.

14.
Opt Lett ; 36(2): 112-4, 2011 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-21263470

RESUMEN

We present experimental and numerical results showing the generation and breakup of the Peregrine soliton in standard telecommunications fiber. The impact of nonideal initial conditions is studied through direct cutback measurements of the longitudinal evolution of the emerging soliton dynamics and is shown to be associated with the splitting of the Peregrine soliton into two subpulses, with each subpulse itself exhibiting Peregrine soliton characteristics. Experimental results are in good agreement with simulations.

15.
Opt Express ; 18(18): 18697-702, 2010 Aug 30.
Artículo en Inglés | MEDLINE | ID: mdl-20940762

RESUMEN

In this work, we describe an all-fibered set-up that allows the optical magnification of the amplitude jitter of low-fluctuation pulse trains, enabling an easy measurement of the statistical properties by usual photodiodes and electronic equipments.

16.
Opt Express ; 17(20): 17747-57, 2009 Sep 28.
Artículo en Inglés | MEDLINE | ID: mdl-19907561

RESUMEN

We report on the experimental and theoretical study of a self-phase-modulation-based regenerator at 42.6 Gbit/s with a return-to-zero 33% format. We point out some detrimental effects such as intrachannel interactions and Brillouin scattering. An efficient solution, relying on a self-phase-modulation-based pulse compressor in combination with the regenerator, is proposed to overcome these detrimental phenomena. The experimental demonstration shows the effectiveness of a wavelength-transparent regenerator at 42.6 Gbit/s with a sensitivity-improvement of more than 5 dB and an eye-opening improvement of 2.3 dB in a back-to-back configuration, as well as a 10 times maximum transmission distance improvement for a BER of 10(-4).


Asunto(s)
Filtración/instrumentación , Modelos Teóricos , Dispositivos Ópticos , Refractometría/instrumentación , Telecomunicaciones/instrumentación , Simulación por Computador , Diseño Asistido por Computadora , Diseño de Equipo , Análisis de Falla de Equipo , Microondas , Reproducibilidad de los Resultados , Sensibilidad y Especificidad
17.
Opt Express ; 17(15): 12612-8, 2009 Jul 20.
Artículo en Inglés | MEDLINE | ID: mdl-19654665

RESUMEN

We study the influence of Stimulated Brillouin Scattering on the polarization stabilization of a light beam propagating in a highly-birefringent optical fiber. In particular, due to a saturation effect, we find that the output polarization lies on a ring when the polarization is represented onto the Poincaré sphere.

18.
Opt Express ; 17(12): 10393-8, 2009 Jun 08.
Artículo en Inglés | MEDLINE | ID: mdl-19506694

RESUMEN

Nonlinear femtosecond pulse propagation in an all-solid photonic bandgap fiber is experimentally and numerically investigated. Guiding light in such fiber occurs via two mechanisms: photonic bandgap in the central silica core or total internal reflection in the germanium doped inclusions. By properly combining spectral filtering, dispersion tailoring and pump coupling into the fiber modes, we experimentally demonstrate efficient supercontinuum generation with controllable spectral bandwidth.


Asunto(s)
Rayos Láser , Fibras Ópticas , Procesamiento de Señales Asistido por Computador/instrumentación , Diseño Asistido por Computadora , Diseño de Equipo , Análisis de Falla de Equipo , Dinámicas no Lineales , Fotones , Reproducibilidad de los Resultados , Dispersión de Radiación , Sensibilidad y Especificidad
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA