Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros













Base de datos
Intervalo de año de publicación
1.
Am J Physiol Renal Physiol ; 324(6): F544-F557, 2023 06 01.
Artículo en Inglés | MEDLINE | ID: mdl-37102688

RESUMEN

Leptin regulates energy balance via leptin receptors expressed in central and peripheral tissues, but little is known about leptin-sensitive kidney genes and the role of the tubular leptin receptor (Lepr) in response to a high-fat diet (HFD). Quantitative RT-PCR analysis of Lepr splice variants A, B, and C revealed a ratio of ∼100:10:1 in the mouse kidney cortex and medulla, with medullary levels being ∼10 times higher. Leptin replacement in ob/ob mice for 6 days reduced hyperphagia, hyperglycemia, and albuminuria, associated with normalization of kidney mRNA expression of molecular markers of glycolysis, gluconeogenesis, amino acid synthesis, and megalin. Normalization of leptin for 7 h in ob/ob mice did not normalize hyperglycemia or albuminuria. Tubular knockdown of Lepr [Pax8-Lepr knockout (KO)] and in situ hybridization revealed a minor fraction of Lepr mRNA in tubular cells compared with endothelial cells. Nevertheless, Pax8-Lepr KO mice had lower kidney weight. Moreover, while HFD-induced hyperleptinemia, increases in kidney weight and glomerular filtration rate, and a modest blood pressure lowering effect were similar compared with controls, they showed a blunted rise in albuminuria. Use of Pax8-Lepr KO and leptin replacement in ob/ob mice identified acetoacetyl-CoA synthetase and gremlin 1 as tubular Lepr-sensitive genes that are increased and reduced by leptin, respectively. In conclusion, leptin deficiency may increase albuminuria via systemic metabolic effects that impinge on kidney megalin expression, whereas hyperleptinemia may induce albuminuria by direct tubular Lepr effects. Implications of Lepr variants and the novel tubular Lepr/acetoacetyl-CoA synthetase/gremlin 1 axis remain to be determined.NEW & NOTEWORTHY This study provides new insights into kidney gene expression of leptin receptor splice variants, leptin-sensitive kidney gene expression, and the role of the leptin receptor in renal tubular cells for the response to diet-induced hyperleptinemia and obesity including albuminuria.


Asunto(s)
Hiperglucemia , Leptina , Animales , Ratones , Albuminuria/genética , Células Endoteliales/metabolismo , Expresión Génica , Túbulos Renales/metabolismo , Leptina/genética , Proteína 2 Relacionada con Receptor de Lipoproteína de Baja Densidad/genética , Receptores de Leptina/genética , ARN Mensajero
2.
Physiology (Bethesda) ; 34(3): 189-197, 2019 05 01.
Artículo en Inglés | MEDLINE | ID: mdl-30968755

RESUMEN

A deficit or loss in the number of nephrons, the functional unit of the kidney, can induce compensatory growth and hyperfunction of remaining nephrons. An increase in single nephron glomerular filtration rate (SNGFR) aims to compensate but may be deleterious in the long term. The increase in SNGFR is determined by the dynamics of nephron loss, total remaining GFR, the body's excretory demand, and the functional capacity to sustain single nephron hyperfunction.


Asunto(s)
Adaptación Fisiológica , Nefronas/fisiopatología , Insuficiencia Renal/fisiopatología , Animales , Tasa de Filtración Glomerular , Homeostasis , Humanos
3.
Nephron ; 140(2): 140-143, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-29852498

RESUMEN

BACKGROUND: A significant portion of patients who are affected by acute kidney injury (AKI) do not fully recover due to largely unclear reasons. Restoration of tubular function has been proposed to be a prerequisite for glomerular filtration rate (GFR) recovery. SUMMARY: Proximal tubular cells dedifferentiate during the tubular injury phase, which is required for subsequent cell proliferation and replacement of lost epithelial cells. Experimental studies indicate that some cells fail to redifferentiate and continue to produce growth factors (e.g., transforming growth factor ß) that can induce fibrosis. Preclinical studies provide first evidence for beneficial effects of inhibiting glucose transport in the proximal tubule in models of ischemia-reperfusion injury. Comparing renal RNA sequencing data with kidney function during recovery from varying levels of AKI may provide new cues with regard to the sequence of events and help identify key determinants of recovery from AKI. Key Messages: Tubular recovery after AKI is vital for recovery of kidney function including improvement of GFR, and likely determines which patients fully recover from AKI or progress to chronic kidney disease. There is a need to better understand the sequence of events and the processes of tubular cell proliferation and repair, including safe strategies to intervene. The temporary inhibition of selected tubular transport processes, possibly in selected nephron regions, may provide an opportunity to improve tubular cell energetics and facilitate tubular cell recovery with consequences for kidney outcome.


Asunto(s)
Lesión Renal Aguda/patología , Lesión Renal Aguda/terapia , Túbulos Renales/patología , Glucosa/metabolismo , Humanos , Recuperación de la Función
4.
Drugs ; 78(7): 717-726, 2018 May.
Artículo en Inglés | MEDLINE | ID: mdl-29663292

RESUMEN

Type 1 diabetes mellitus is a difficult disease to treat due to the relative paucity of therapeutic options other than injectable insulin. The latter, however, can induce hypoglycemia, which has been linked to enhanced cardiovascular risk. Sodium glucose cotransporter 2 (SGLT2) inhibitors are a new class of oral anti-hyperglycemic medications that do not increase the hypoglycemia risk and are US Food and Drug Administration (FDA) approved in type 2 diabetes mellitus. SGLT2 inhibitors may also be of benefit in type 1 diabetic patients, in addition to insulin, although they have not yet been approved for this indication. By blocking SGLT2 in the early proximal tubules of the kidney, these drugs decrease renal glucose retention, which is enhanced in hyperglycemia, thereby improving blood glucose control, in type 1 and type 2 diabetic patents. Their low hypoglycemia risk is due to the compensating reabsorption capacity of another glucose transporter, SGLT1, in the downstream late proximal tubule and the body's metabolic counter-regulation, which remains intact during SGLT2 inhibition. When insulin dosage is lowered too much, SGLT2 inhibitors can enhance ketogenesis to the extent that the risk of diabetic ketoacidosis increases, particularly in type 1 diabetic patients. SGLT2 inhibitors improve the renal and cardiovascular outcome in type 2 diabetic patients. The mechanisms likely include a reduction in glomerular hyperfiltration, blood pressure, volume overload, and body weight, as well as lowering blood glucose without increasing the hypoglycemia risk. The same mechanistic effects are induced in type 1 diabetic patients. More studies are needed with SGLT2 inhibitors in type 1 diabetic patients, including renal and cardiovascular clinical outcome trials, to fully evaluate their therapeutic potential in this specific population.


Asunto(s)
Diabetes Mellitus Tipo 1/tratamiento farmacológico , Hipoglucemiantes/uso terapéutico , Inhibidores del Cotransportador de Sodio-Glucosa 2/uso terapéutico , Peso Corporal/efectos de los fármacos , Enfermedades Cardiovasculares/tratamiento farmacológico , Enfermedades Cardiovasculares/prevención & control , Diabetes Mellitus Tipo 1/metabolismo , Diabetes Mellitus Tipo 2/tratamiento farmacológico , Diabetes Mellitus Tipo 2/prevención & control , Cetoacidosis Diabética/prevención & control , Tasa de Filtración Glomerular/efectos de los fármacos , Humanos , Hiperglucemia/prevención & control , Hipoglucemiantes/administración & dosificación , Hipoglucemiantes/efectos adversos , Inhibidores del Cotransportador de Sodio-Glucosa 2/administración & dosificación , Inhibidores del Cotransportador de Sodio-Glucosa 2/efectos adversos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA