Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Cell Metab ; 31(5): 1004-1016.e5, 2020 05 05.
Artículo en Inglés | MEDLINE | ID: mdl-32375022

RESUMEN

A drastic transition at birth, from constant maternal nutrient supply in utero to intermittent postnatal feeding, requires changes in the metabolic system of the neonate. Despite their central role in metabolic homeostasis, little is known about how pancreatic ß cells adjust to the new nutritional challenge. Here, we find that after birth ß cell function shifts from amino acid- to glucose-stimulated insulin secretion in correlation with the change in the nutritional environment. This adaptation is mediated by a transition in nutrient sensitivity of the mTORC1 pathway, which leads to intermittent mTORC1 activity. Disrupting nutrient sensitivity of mTORC1 in mature ß cells reverts insulin secretion to a functionally immature state. Finally, manipulating nutrient sensitivity of mTORC1 in stem cell-derived ß cells in vitro strongly enhances their glucose-responsive insulin secretion. These results reveal a mechanism by which nutrients regulate ß cell function, thereby enabling a metabolic adaptation for the newborn.


Asunto(s)
Glucosa/metabolismo , Nutrientes/metabolismo , Animales , Células Cultivadas , Humanos , Secreción de Insulina , Ratones , Ratones Endogámicos C57BL
2.
Nature ; 569(7756): 368-373, 2019 05.
Artículo en Inglés | MEDLINE | ID: mdl-31068696

RESUMEN

In vitro differentiation of human stem cells can produce pancreatic ß-cells; the loss of this insulin-secreting cell type underlies type 1 diabetes. Here, as a step towards understanding this differentiation process, we report the transcriptional profiling of more than 100,000 human cells undergoing in vitro ß-cell differentiation, and describe the cells that emerged. We resolve populations that correspond to ß-cells, α-like poly-hormonal cells, non-endocrine cells that resemble pancreatic exocrine cells and a previously unreported population that resembles enterochromaffin cells. We show that endocrine cells maintain their identity in culture in the absence of exogenous growth factors, and that changes in gene expression associated with in vivo ß-cell maturation are recapitulated in vitro. We implement a scalable re-aggregation technique to deplete non-endocrine cells and identify CD49a (also known as ITGA1) as a surface marker of the ß-cell population, which allows magnetic sorting to a purity of 80%. Finally, we use a high-resolution sequencing time course to characterize gene-expression dynamics during the induction of human pancreatic endocrine cells, from which we develop a lineage model of in vitro ß-cell differentiation. This study provides a perspective on human stem-cell differentiation, and will guide future endeavours that focus on the differentiation of pancreatic islet cells, and their applications in regenerative medicine.


Asunto(s)
Diferenciación Celular , Células Secretoras de Insulina/citología , Células Madre/citología , Animales , Biomarcadores/metabolismo , Linaje de la Célula , Separación Celular , Humanos , Insulina/metabolismo , Células Secretoras de Insulina/clasificación , Células Secretoras de Insulina/metabolismo , Integrina alfa1/metabolismo , Masculino , Ratones , RNA-Seq , Análisis de la Célula Individual , Células Madre/metabolismo
3.
Cell Syst ; 3(4): 346-360.e4, 2016 10 26.
Artículo en Inglés | MEDLINE | ID: mdl-27667365

RESUMEN

Although the function of the mammalian pancreas hinges on complex interactions of distinct cell types, gene expression profiles have primarily been described with bulk mixtures. Here we implemented a droplet-based, single-cell RNA-seq method to determine the transcriptomes of over 12,000 individual pancreatic cells from four human donors and two mouse strains. Cells could be divided into 15 clusters that matched previously characterized cell types: all endocrine cell types, including rare epsilon-cells; exocrine cell types; vascular cells; Schwann cells; quiescent and activated stellate cells; and four types of immune cells. We detected subpopulations of ductal cells with distinct expression profiles and validated their existence with immuno-histochemistry stains. Moreover, among human beta- cells, we detected heterogeneity in the regulation of genes relating to functional maturation and levels of ER stress. Finally, we deconvolved bulk gene expression samples using the single-cell data to detect disease-associated differential expression. Our dataset provides a resource for the discovery of novel cell type-specific transcription factors, signaling receptors, and medically relevant genes.


Asunto(s)
Transcriptoma , Animales , Diferenciación Celular , Perfilación de la Expresión Génica , Regulación del Desarrollo de la Expresión Génica , Humanos , Islotes Pancreáticos , Ratones , Páncreas , Páncreas Exocrino , Análisis de la Célula Individual , Factores de Transcripción
4.
PLoS Negl Trop Dis ; 9(3): e0003539, 2015 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-25781890

RESUMEN

Plasmodium vivax, one of the five species of Plasmodium parasites that cause human malaria, is responsible for 25-40% of malaria cases worldwide. Malaria global elimination efforts will benefit from accurate and effective genotyping tools that will provide insight into the population genetics and diversity of this parasite. The recent sequencing of P. vivax isolates from South America, Africa, and Asia presents a new opportunity by uncovering thousands of novel single nucleotide polymorphisms (SNPs). Genotyping a selection of these SNPs provides a robust, low-cost method of identifying parasite infections through their unique genetic signature or barcode. Based on our experience in generating a SNP barcode for P. falciparum using High Resolution Melting (HRM), we have developed a similar tool for P. vivax. We selected globally polymorphic SNPs from available P. vivax genome sequence data that were located in putatively selectively neutral sites (i.e., intergenic, intronic, or 4-fold degenerate coding). From these candidate SNPs we defined a barcode consisting of 42 SNPs. We analyzed the performance of the 42-SNP barcode on 87 P. vivax clinical samples from parasite populations in South America (Brazil, French Guiana), Africa (Ethiopia) and Asia (Sri Lanka). We found that the P. vivax barcode is robust, as it requires only a small quantity of DNA (limit of detection 0.3 ng/µl) to yield reproducible genotype calls, and detects polymorphic genotypes with high sensitivity. The markers are informative across all clinical samples evaluated (average minor allele frequency > 0.1). Population genetic and statistical analyses show the barcode captures high degrees of population diversity and differentiates geographically distinct populations. Our 42-SNP barcode provides a robust, informative, and standardized genetic marker set that accurately identifies a genomic signature for P. vivax infections.


Asunto(s)
Código de Barras del ADN Taxonómico/métodos , ADN Protozoario/genética , Malaria Vivax/parasitología , Plasmodium vivax/aislamiento & purificación , África/epidemiología , Asia/epidemiología , Secuencia de Bases , Mapeo Cromosómico , Marcadores Genéticos/genética , Humanos , Malaria Vivax/epidemiología , Plasmodium falciparum/clasificación , Plasmodium falciparum/genética , Plasmodium falciparum/aislamiento & purificación , Plasmodium vivax/clasificación , Plasmodium vivax/genética , Polimorfismo de Nucleótido Simple , América del Sur/epidemiología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...