Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 36
Filtrar
1.
Res Sq ; 2024 Jan 31.
Artículo en Inglés | MEDLINE | ID: mdl-38352496

RESUMEN

To understand natural resistance to Mycobacterium tuberculosis ( Mtb ) infection, we studied people living with HIV (PLWH) in an area of high Mtb transmission. Given that alveolar leukocytes may contribute to this resistance, we performed single cell RNA-sequencing of bronchoalveolar lavage cells, unstimulated or ex vivo stimulated with Mtb . We obtained high quality cells for 7 participants who were TST & IGRA positive (called LTBI) and 6 who were persistently TST & IGRA negative (called resisters). Alveolar macrophages (AM) from resisters displayed more of an M1 phenotype relative to LTBI AM at baseline. Alveolar lymphocytosis (10%-60%) was exhibited by 5/6 resisters, resulting in higher numbers of CD4 + and CD8 + IFNG -expressing cells at baseline and upon Mtb challenge than LTBI samples. Mycobactericidal granulysin was expressed almost exclusively by a cluster of CD8 + T cells that co-expressed granzyme B, perforin and NK cell receptors. For resisters, these poly-cytotoxic T cells over-represented activating NK cell receptors and were present at 15-fold higher numbers in alveoli compared to LTBI. Altogether, our results showed that alveolar lymphocytosis, with increased numbers of alveolar IFNG -expressing cells and CD8 + poly-cytotoxic T cells, as well as activated AM were strongly associated with protection from persistent Mtb infection in PLWH.

2.
Front Med (Lausanne) ; 10: 1233220, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37564037

RESUMEN

Introduction: Leprosy reactions (LR) are severe episodes of intense activation of the host inflammatory response of uncertain etiology, today the leading cause of permanent nerve damage in leprosy patients. Several genetic and non-genetic risk factors for LR have been described; however, there are limited attempts to combine this information to estimate the risk of a leprosy patient developing LR. Here we present an artificial intelligence (AI)-based system that can assess LR risk using clinical, demographic, and genetic data. Methods: The study includes four datasets from different regions of Brazil, totalizing 1,450 leprosy patients followed prospectively for at least 2 years to assess the occurrence of LR. Data mining using WEKA software was performed following a two-step protocol to select the variables included in the AI system, based on Bayesian Networks, and developed using the NETICA software. Results: Analysis of the complete database resulted in a system able to estimate LR risk with 82.7% accuracy, 79.3% sensitivity, and 86.2% specificity. When using only databases for which host genetic information associated with LR was included, the performance increased to 87.7% accuracy, 85.7% sensitivity, and 89.4% specificity. Conclusion: We produced an easy-to-use, online, free-access system that identifies leprosy patients at risk of developing LR. Risk assessment of LR for individual patients may detect candidates for close monitoring, with a potentially positive impact on the prevention of permanent disabilities, the quality of life of the patients, and upon leprosy control programs.

3.
An. bras. dermatol ; 98(2): 216-220, March.-Apr. 2023. tab, graf
Artículo en Inglés | LILACS-Express | LILACS | ID: biblio-1429672

RESUMEN

Abstract Vitiligo is an autoimmune disease of the skin that results in localized or disseminated white macules. One common feature of several existing classification protocols is the distribution of the disease into two main subtypes, non-segmental vitiligo (NSV) and segmental vitiligo (SV). SV is characterized by depigmentation spreading within one or more skin segments while NSV is widespread. Several clinical-epidemiological observations suggest that SV has distinct autoimmune pathophysiology compared to NSV. Furthermore, the clinical distribution pattern of SV lesions closely resembles other melanocyte mosaicism diseases. These observations led us to hypothesize that SV is caused by a localized autoimmune reaction targeting epidermal mosaicism melanocytes. Here, we proposed examples of experimental approaches to assess mosaicism in SV patients.

4.
PLoS Pathog ; 19(3): e1011260, 2023 03.
Artículo en Inglés | MEDLINE | ID: mdl-36972292

RESUMEN

Leprosy, caused by Mycobacterium leprae, rarely affects children younger than 5 years. Here, we studied a multiplex leprosy family that included monozygotic twins aged 22 months suffering from paucibacillary leprosy. Whole genome sequencing identified three amino acid mutations previously associated with Crohn's disease and Parkinson's disease as candidate variants for early onset leprosy: LRRK2 N551K, R1398H and NOD2 R702W. In genome-edited macrophages, we demonstrated that cells expressing the LRRK2 mutations displayed reduced apoptosis activity following mycobacterial challenge independently of NOD2. However, employing co-immunoprecipitation and confocal microscopy we showed that LRRK2 and NOD2 proteins interacted in RAW cells and monocyte-derived macrophages, and that this interaction was substantially reduced for the NOD2 R702W mutation. Moreover, we observed a joint effect of LRRK2 and NOD2 variants on Bacillus Calmette-Guérin (BCG)-induced respiratory burst, NF-κB activation and cytokine/chemokine secretion with a strong impact for the genotypes found in the twins consistent with a role of the identified mutations in the development of early onset leprosy.


Asunto(s)
Predisposición Genética a la Enfermedad , Lepra , Niño , Humanos , Alelos , Genotipo , Lepra/genética , Mutación , Proteína Adaptadora de Señalización NOD2/genética , Proteína 2 Quinasa Serina-Treonina Rica en Repeticiones de Leucina/genética
5.
An Bras Dermatol ; 98(2): 216-220, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36529602

RESUMEN

Vitiligo is an autoimmune disease of the skin that results in localized or disseminated white macules. One common feature of several existing classification protocols is the distribution of the disease into two main subtypes, non-segmental vitiligo (NSV) and segmental vitiligo (SV). SV is characterized by depigmentation spreading within one or more skin segments while NSV is widespread. Several clinical-epidemiological observations suggest that SV has distinct autoimmune pathophysiology compared to NSV. Furthermore, the clinical distribution pattern of SV lesions closely resembles other melanocyte mosaicism diseases. These observations led us to hypothesize that SV is caused by a localized autoimmune reaction targeting epidermal mosaicism melanocytes. Here, we proposed examples of experimental approaches to assess mosaicism in SV patients.


Asunto(s)
Vitíligo , Humanos , Vitíligo/genética , Vitíligo/patología , Mosaicismo , Melanocitos/patología , Piel/patología , Epidermis/patología
6.
An. bras. dermatol ; 97(4): 478-490, July-Aug. 2022. tab, graf
Artículo en Inglés | LILACS-Express | LILACS | ID: biblio-1383607

RESUMEN

Abstract Vitiligo is a complex disease whose pathogenesis results from the interaction of genetic components, metabolic factors linked to cellular oxidative stress, melanocyte adhesion to the epithelium, and immunity (innate and adaptive), which culminate in aggression against melanocytes. In vitiligo, melanocytes are more sensitive to oxidative damage, leading to the increased expression of proinflammatory proteins such as HSP70. The lower expression of epithelial adhesion molecules, such as DDR1 and E-cadherin, facilitates damage to melanocytes and exposure of antigens that favor autoimmunity. Activation of the type 1-IFN pathway perpetuates the direct action of CD8+ cells against melanocytes, facilitated by regulatory T-cell dysfunction. The identification of several genes involved in these processes sets the stage for disease development and maintenance. However, the relationship of vitiligo with environmental factors, psychological stress, comorbidities, and the elements that define individual susceptibility to the disease are a challenge to the integration of theories related to its pathogenesis.

7.
Sci Adv ; 8(22): eabm2510, 2022 06 03.
Artículo en Inglés | MEDLINE | ID: mdl-35648852

RESUMEN

Despite the availability of highly efficacious vaccines, coronavirus disease 2019 (COVID-19) caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) lacks effective drug treatment, which results in a high rate of mortality. To address this therapeutic shortcoming, we applied a systems biology approach to the study of patients hospitalized with severe COVID. We show that, at the time of hospital admission, patients who were equivalent on the clinical ordinal scale displayed significant differential monocyte epigenetic and transcriptomic attributes between those who would survive and those who would succumb to COVID-19. We identified messenger RNA metabolism, RNA splicing, and interferon signaling pathways as key host responses overactivated by patients who would not survive. Those pathways are prime drug targets to reduce mortality of critically ill patients with COVID-19, leading us to identify tacrolimus, zotatifin, and nintedanib as three strong candidates for treatment of severely ill patients at the time of hospital admission.


Asunto(s)
Tratamiento Farmacológico de COVID-19 , Antivirales/farmacología , Antivirales/uso terapéutico , Humanos , SARS-CoV-2 , Biología de Sistemas
8.
An Bras Dermatol ; 97(4): 478-490, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35643735

RESUMEN

Vitiligo is a complex disease whose pathogenesis results from the interaction of genetic components, metabolic factors linked to cellular oxidative stress, melanocyte adhesion to the epithelium, and immunity (innate and adaptive), which culminate in aggression against melanocytes. In vitiligo, melanocytes are more sensitive to oxidative damage, leading to the increased expression of proinflammatory proteins such as HSP70. The lower expression of epithelial adhesion molecules, such as DDR1 and E-cadherin, facilitates damage to melanocytes and exposure of antigens that favor autoimmunity. Activation of the type 1-IFN pathway perpetuates the direct action of CD8+ cells against melanocytes, facilitated by regulatory T-cell dysfunction. The identification of several genes involved in these processes sets the stage for disease development and maintenance. However, the relationship of vitiligo with environmental factors, psychological stress, comorbidities, and the elements that define individual susceptibility to the disease are a challenge to the integration of theories related to its pathogenesis.


Asunto(s)
Vitíligo , Autoinmunidad , Humanos , Melanocitos/patología , Estrés Oxidativo , Vitíligo/genética
9.
PLoS Negl Trop Dis ; 15(12): e0010029, 2021 12.
Artículo en Inglés | MEDLINE | ID: mdl-34879060

RESUMEN

Leprosy is the second most prevalent mycobacterial disease globally. Despite the existence of an effective therapy, leprosy incidence has consistently remained above 200,000 cases per year since 2010. Numerous host genetic factors have been identified for leprosy that contribute to the persistently high case numbers. In the past decade, genetic epidemiology approaches, including genome-wide association studies (GWAS), identified more than 30 loci contributing to leprosy susceptibility. However, GWAS loci commonly encompass multiple genes, which poses a challenge to define causal candidates for each locus. To address this problem, we hypothesized that genes contributing to leprosy susceptibility differ in their frequencies of rare protein-altering variants between cases and controls. Using deep resequencing we assessed protein-coding variants for 34 genes located in GWAS or linkage loci in 555 Vietnamese leprosy cases and 500 healthy controls. We observed 234 nonsynonymous mutations in the targeted genes. A significant depletion of protein-altering variants was detected for the IL18R1 and BCL10 genes in leprosy cases. The IL18R1 gene is clustered with IL18RAP and IL1RL1 in the leprosy GWAS locus on chromosome 2q12.1. Moreover, in a recent GWAS we identified an HLA-independent signal of association with leprosy on chromosome 6p21. Here, we report amino acid changes in the CDSN and PSORS1C2 genes depleted in leprosy cases, indicating them as candidate genes in the chromosome 6p21 locus. Our results show that deep resequencing can identify leprosy candidate susceptibility genes that had been missed by classic linkage and association approaches.


Asunto(s)
Predisposición Genética a la Enfermedad , Estudio de Asociación del Genoma Completo , Lepra/genética , Adolescente , Adulto , Proteína 10 de la LLC-Linfoma de Células B/genética , Femenino , Ligamiento Genético , Secuenciación de Nucleótidos de Alto Rendimiento , Humanos , Subunidad alfa del Receptor de Interleucina-18/genética , Subunidad beta del Receptor de Interleucina-18/genética , Masculino , Adulto Joven
10.
J Clin Invest ; 131(22)2021 11 15.
Artículo en Inglés | MEDLINE | ID: mdl-34473646

RESUMEN

Persons living with HIV (PLWH) are at increased risk of tuberculosis (TB). HIV-associated TB is often the result of recent infection with Mycobacterium tuberculosis (M. tuberculosis) followed by rapid progression to disease. Alveolar macrophages (AMs) are the first cells of the innate immune system that engage M. tuberculosis, but how HIV and antiretroviral therapy (ART) affect the anti-mycobacterial response of AMs is not known. To investigate the impact of HIV and ART on the transcriptomic and epigenetic response of AMs to M. tuberculosis, we obtained AMs by bronchoalveolar lavage from 20 PLWH receiving ART, 16 control subjects who were HIV-free (HC), and 14 subjects who received ART as preexposure prophylaxis (PrEP) to prevent HIV infection. Following in vitro challenge with M. tuberculosis, AMs from each group displayed overlapping but distinct profiles of significantly up- and downregulated genes in response to M. tuberculosis. Comparatively, AMs isolated from both PLWH and PrEP subjects presented a substantially weaker transcriptional response. In addition, AMs from HC subjects challenged with M. tuberculosis responded with pronounced chromatin accessibility changes while AMs obtained from PLWH and PrEP subjects displayed no significant changes in their chromatin state. Collectively, these results revealed a stronger adverse effect of ART than HIV on the epigenetic landscape and transcriptional responsiveness of AMs.


Asunto(s)
Epigénesis Genética , Infecciones por VIH/inmunología , Macrófagos Alveolares/inmunología , Mycobacterium tuberculosis/inmunología , Adulto , Anciano , Antirretrovirales/efectos adversos , Femenino , Infecciones por VIH/tratamiento farmacológico , Humanos , Macrófagos Alveolares/metabolismo , Masculino , Persona de Mediana Edad , Profilaxis Pre-Exposición , Transcriptoma
11.
Front Immunol ; 12: 714808, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34276708

RESUMEN

Human genetic control is thought to affect a considerable part of the outcome of infection with Mycobacterium tuberculosis (Mtb). Most of us deal with the pathogen by containment (associated with clinical "latency") or sterilization, but tragically millions each year do not. After decades of studies on host genetic susceptibility to Mtb infection, genetic variation has been discovered to play a role in tuberculous immunoreactivity and tuberculosis (TB) disease. Genes encoding pattern recognition receptors (PRRs) enable a consistent, molecularly direct interaction between humans and Mtb which suggests the potential for co-evolution. In this review, we explore the roles ascribed to PRRs during Mtb infection and ask whether such a longstanding and intimate interface between our immune system and this pathogen plays a critical role in determining the outcome of Mtb infection. The scientific evidence to date suggests that PRR variation is clearly implicated in altered immunity to Mtb but has a more subtle role in limiting the pathogen and pathogenesis. In contrast to 'effectors' like IFN-γ, IL-12, Nitric Oxide and TNF that are critical for Mtb control, 'sensors' like PRRs are less critical for the outcome of Mtb infection. This is potentially due to redundancy of the numerous PRRs in the innate arsenal, such that Mtb rarely goes unnoticed. Genetic association studies investigating PRRs during Mtb infection should therefore be designed to investigate endophenotypes of infection - such as immunological or clinical variation - rather than just TB disease, if we hope to understand the molecular interface between innate immunity and Mtb.


Asunto(s)
Resistencia a la Enfermedad/genética , Predisposición Genética a la Enfermedad , Variación Genética , Inmunidad/genética , Mycobacterium tuberculosis/inmunología , Receptores de Reconocimiento de Patrones/genética , Tuberculosis/etiología , Animales , Biomarcadores , Resistencia a la Enfermedad/inmunología , Interacciones Huésped-Patógeno/genética , Interacciones Huésped-Patógeno/inmunología , Humanos , Lectinas Tipo C/genética , Lectinas Tipo C/metabolismo , Ratones , Ratones Noqueados
12.
Int J Immunogenet ; 48(1): 25-35, 2021 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-33151039

RESUMEN

Leprosy is a prevalent disease in Brazil, which ranks as the country with the second highest number of cases in the world. The disease manifests in a spectrum of forms, and genetic differences in the host can help to elucidate the immunopathogenesis. For a better understanding of MICA association with leprosy, we performed a case-control and a family-based study in two endemic populations in Brazil. MICA and HLA-B alleles were evaluated in 409 leprosy patients and in 419 healthy contacts by PCR-SSOP-Luminex-based technology. In the familial study, analysis of 46 families was completed by direct sequencing of all exons and 3'/5'untranslated regions, using the Ilumina MiSeq platform. All data were collected between 2006 and 2009. Statistical analysis was performed using the Chi-square or Fisher's exact test together with a multivariate analysis. Family-based association was assessed by transmission disequilibrium test (TDT) software FBAT 2.0.4. We found associations between the haplotype MICA*002-HLA-B*35 with leprosy in both the per se and the multibacillary (MB) forms when compared to healthy contacts. The MICA allele *008 was associated with the clinical forms of paucibacillary (PB). Additionally, MICA*029 was associated with the clinical forms of MB. The association of MICA*029 allele (MICA-A4 variant) with the susceptibility to the MB form suggests this variant for the transmembrane domain of the MICA molecule may be a risk factor for leprosy. Two MICA and nine HLA-B variants were found associated with leprosy per se in the Colônia do Prata population. Linkage disequilibrium analysis revealed perfect linkage disequilibrium (LD) between HLA-B markers rs2596498 and rs2507992, and high LD (R2  = .92) between these and the marker rs2442718. This familial study demonstrates that MICA association signals are not independent from those observed for HLA-B. Our findings contribute the knowledge pool of the immunogenetics of Hansen's disease and reveals a new association of the MICA*029 allele.


Asunto(s)
Antígenos HLA-B/genética , Antígenos de Histocompatibilidad Clase I/genética , Lepra/inmunología , Regiones no Traducidas 3'/genética , Regiones no Traducidas 5'/genética , Adolescente , Adulto , Alelos , Brasil/epidemiología , Estudios de Casos y Controles , Niño , Enfermedades Endémicas , Etnicidad/genética , Exones/genética , Salud de la Familia , Femenino , Frecuencia de los Genes , Predisposición Genética a la Enfermedad , Genotipo , Haplotipos/genética , Humanos , Lepra/epidemiología , Lepra/genética , Desequilibrio de Ligamiento , Masculino , Persona de Mediana Edad , Polimorfismo de Nucleótido Simple , Dominios Proteicos , Adulto Joven
13.
PLoS Pathog ; 16(8): e1008818, 2020 08.
Artículo en Inglés | MEDLINE | ID: mdl-32776973

RESUMEN

Leprosy is a chronic disease caused by Mycobacterium leprae. Worldwide, more than 200,000 new patients are affected by leprosy annually, making it the second most common mycobacterial disease after tuberculosis. The MHC/HLA region has been consistently identified as carrying major leprosy susceptibility variants in different populations at times with inconsistent results. To establish the unambiguous molecular identity of classical HLA class I and class II leprosy susceptibility factors, we applied next-generation sequencing to genotype with high-resolution 11 HLA class I and class II genes in 1,155 individuals from a Vietnamese leprosy case-control sample. HLA alleles belonging to an extended haplotype from HLA-A to HLA-DPB1 were associated with risk to leprosy. This susceptibility signal could be reduced to the HLA-DRB1*10:01~ HLA-DQA1*01:05 alleles which were in complete linkage disequilibrium (LD). In addition, haplotypes containing HLA-DRB3~ HLA-DRB1*12:02 and HLA-C*07:06~ HLA-B*44:03~ HLA-DRB1*07:01 alleles were found as two independent protective factors for leprosy. Moreover, we replicated the previously associated HLA-DRB1*15:01 as leprosy risk factor and HLA-DRB1*04:05~HLA-DQA1*03:03 as protective alleles. When we narrowed the analysis to the single amino acid level, we found that the associations of the HLA alleles were largely captured by four independent amino acids at HLA-DRß1 positions 57 (D) and 13 (F), HLA-B position 63 (E) and HLA-A position 19 (K). Hence, analyses at the amino acid level circumvented the ambiguity caused by strong LD of leprosy susceptibility HLA alleles and identified four distinct leprosy susceptibility factors.


Asunto(s)
Aminoácidos/genética , Predisposición Genética a la Enfermedad , Antígenos de Histocompatibilidad Clase II/genética , Antígenos de Histocompatibilidad Clase I/genética , Lepra/patología , Mutación , Adolescente , Adulto , Femenino , Haplotipos , Humanos , Lepra/genética , Masculino , Adulto Joven
14.
PLoS Pathog ; 16(5): e1008565, 2020 05.
Artículo en Inglés | MEDLINE | ID: mdl-32421744

RESUMEN

Leprosy is a chronic infectious disease of the skin and peripheral nerves with a strong genetic predisposition. Recent genome-wide approaches have identified numerous common variants associated with leprosy, almost all in the Chinese population. We conducted the first family-based genome-wide association study of leprosy in 622 affected offspring from Vietnam, followed by replication in an independent sample of 1181 leprosy cases and 668 controls of the same ethnic origin. The most significant results were observed within the HLA region, in which six SNPs displayed genome-wide significant associations, all of which were replicated in the independent case/control sample. We investigated the signal in the HLA region in more detail, by conducting a multivariate analysis on the case/control sample of 319 GWAS-suggestive HLA hits for which evidence for replication was obtained. We identified three independently associated SNPs, two located in the HLA class I region (rs1265048: OR = 0.69 [0.58-0.80], combined p-value = 5.53x10-11; and rs114598080: OR = 1.47 [1.46-1.48], combined p-value = 8.77x10-13), and one located in the HLA class II region (rs3187964 (OR = 1.67 [1.55-1.80], combined p-value = 8.35x10-16). We also validated two previously identified risk factors for leprosy: the missense variant rs3764147 in the LACC1 gene (OR = 1.52 [1.41-1.63], combined p-value = 5.06x10-14), and the intergenic variant rs6871626 located close to the IL12B gene (OR = 0.73 [0.61-0.84], combined p-value = 6.44x10-8). These results shed new light on the genetic control of leprosy, by dissecting the influence of HLA SNPs, and validating the independent role of two additional variants in a large Vietnamese sample.


Asunto(s)
Antígenos de Histocompatibilidad Clase II/genética , Antígenos de Histocompatibilidad Clase I/genética , Lepra/genética , Polimorfismo de Nucleótido Simple , Femenino , Estudio de Asociación del Genoma Completo , Humanos , Subunidad p40 de la Interleucina-12/genética , Péptidos y Proteínas de Señalización Intracelular/genética , Lepra/epidemiología , Masculino
16.
mBio ; 11(1)2020 02 04.
Artículo en Inglés | MEDLINE | ID: mdl-32019801

RESUMEN

Inhalation of conidia of the opportunistic mold Aspergillus fumigatus by immunocompromised hosts can lead to invasive pulmonary disease. Inhaled conidia that escape immune defenses germinate to form filamentous hyphae that invade lung tissues. Conidiation rarely occurs during invasive infection of the human host, allowing the bulk of fungal energy to be directed toward vegetative growth. We hypothesized that forced induction of conidiation during infection can suppress A. fumigatus vegetative growth, impairing the ability of this organism to cause disease. To study the effects of conidiation pathway dysregulation on A. fumigatus virulence, a key transcriptional regulator of conidiation (brlA) was expressed under the control of a doxycycline-inducible promoter. Time- and dose-dependent brlA overexpression was observed in response to doxycycline both in vitro and in vivo. Exposure of the inducible brlA overexpression strain to low doses of doxycycline under vegetative growth conditions in vitro induced conidiation, whereas high doses arrested growth. Overexpression of brlA attenuated A. fumigatus virulence in both an invertebrate and mouse model of invasive aspergillosis. RNA sequencing studies and phenotypic analysis revealed that brlA overexpression results in altered cell signaling, amino acid, and carbohydrate metabolism, including a marked upregulation of trehalose biosynthesis and a downregulation in the biosynthesis of the polysaccharide virulence factor galactosaminogalactan. This proof of concept study demonstrates that activation of the conidiation pathway in A. fumigatus can reduce virulence and suggests that brlA-inducing small molecules may hold promise as a new class of therapeutics for A. fumigatus infection.IMPORTANCE The mold Aspergillus fumigatus reproduces by the production of airborne spores (conidia), a process termed conidiation. In immunocompromised individuals, inhaled A. fumigatus conidia can germinate and form filaments that penetrate and damage lung tissues; however, conidiation does not occur during invasive infection. In this study, we demonstrate that forced activation of conidiation in filaments of A. fumigatus can arrest their growth and impair the ability of this fungus to cause disease in both an insect and a mouse model of invasive infection. Activation of conidiation was linked to profound changes in A. fumigatus metabolism, including a shift away from the synthesis of polysaccharides required for cell wall structure and virulence in favor of carbohydrates used for energy storage and stress resistance. Collectively, these findings suggest that activation of the conidiation pathway may be a promising approach for the development of new agents to prevent or treat A. fumigatus infection.


Asunto(s)
Aspergillus fumigatus/genética , Aspergillus fumigatus/patogenicidad , Proteínas Fúngicas/genética , Esporas Fúngicas/efectos de los fármacos , Factores de Transcripción/genética , Animales , Aspergilosis/microbiología , Aspergillus fumigatus/efectos de los fármacos , Doxiciclina/farmacología , Femenino , Larva/microbiología , Ratones , Ratones Endogámicos BALB C , Mariposas Nocturnas/microbiología , Prueba de Estudio Conceptual , Esporas Fúngicas/genética , Virulencia , Factores de Virulencia
17.
Sci Rep ; 10(1): 1284, 2020 Jan 28.
Artículo en Inglés | MEDLINE | ID: mdl-31992776

RESUMEN

Host genetic susceptibility to leprosy has been intensively investigated over the last decades; however, there are no studies on the role of genetic variants in disease recurrence. A previous initiative identified three recurrent cases of leprosy for which none of the M. leprae strains, as obtained in the first and the second diagnosis, had any known genomic variants associated to resistance to Multidrug therapy; in addition, whole genome sequencing indicated that the same M. leprae was causing two out of the three recurrences. Thus, these individuals were suspected of being particularly susceptible to M. leprae infection, either as relapse or reinfection. To verify this hypothesis, 19 genetic markers distributed across 11 loci (14 genes) classically associated with leprosy were genotyped in the recurrent and in three matching non-recurrent leprosy cases. An enrichment of risk alleles was observed in the recurrent cases, suggesting the existence of a particularly high susceptibility genetic profile among leprosy patients predisposing to disease recurrence.


Asunto(s)
Sitios Genéticos , Predisposición Genética a la Enfermedad , Lepra/genética , Mycobacterium leprae , Polimorfismo de Nucleótido Simple , Secuenciación Completa del Genoma , Femenino , Humanos , Masculino , Recurrencia
18.
Hum Genet ; 139(6-7): 835-846, 2020 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-31713021

RESUMEN

Leprosy is a chronic infectious disease of the skin and peripheral nerves that presents a strong link with the host genetic background. Different approaches in genetic studies have been applied to leprosy and today leprosy is among the infectious diseases with the greatest number of genetic risk variants identified. Several leprosy genes have been implicated in host immune response to pathogens and point to specific pathways that are relevant for host defense to infection. In addition, host genetic factors are also involved in the heterogeneity of leprosy clinical manifestations and in excessive inflammatory responses that occur in some leprosy patients. Finally, genetic studies in leprosy have provided strong evidence of pleiotropic effects between leprosy and other complex diseases, such as immune-mediated or neurodegenerative diseases. These findings not only impact on the field of leprosy and infectious diseases but also make leprosy a good model for the study of complex immune-mediated diseases. Here, we summarize recent genetic findings in leprosy susceptibility and discuss the overlap of the genetic control in leprosy with Parkinson's disease and inflammatory bowel disease. Moreover, some limitations, challenges, and potential new avenues for future genetics studies of leprosy are also discussed in this review.


Asunto(s)
Regulación de la Expresión Génica , Predisposición Genética a la Enfermedad , Lepra/genética , Lepra/inmunología , Modelos Genéticos , Humanos
19.
Proc Natl Acad Sci U S A ; 116(31): 15616-15624, 2019 07 30.
Artículo en Inglés | MEDLINE | ID: mdl-31308240

RESUMEN

Type-1 reactions (T1R) are pathological inflammatory episodes and main contributors to nerve damage in leprosy. Here, we evaluate the genewise enrichment of rare protein-altering variants in 7 genes where common variants were previously associated with T1R. We selected 474 Vietnamese leprosy patients of which 237 were T1R-affected and 237 were T1R-free matched controls. Genewise enrichment of nonsynonymous variants was tested with both kernel-based (sequence kernel association test [SKAT]) and burden methods. Of the 7 genes tested 2 showed statistical evidence of association with T1R. For the LRRK2 gene an enrichment of nonsynonymous variants was observed in T1R-free controls (PSKAT-O = 1.6 × 10-4). This genewise association was driven almost entirely by the gain-of-function variant R1628P (P = 0.004; odds ratio = 0.29). The second genewise association was found for the Parkin coding gene PRKN (formerly PARK2) where 7 rare variants were enriched in T1R-affected cases (PSKAT-O = 7.4 × 10-5). Mutations in both PRKN and LRRK2 are known causes of Parkinson's disease (PD). Hence, we evaluated to what extent such rare amino acid changes observed in T1R are shared with PD. We observed that amino acids in Parkin targeted by nonsynonymous T1R-risk mutations were also enriched for mutations implicated in PD (P = 1.5 × 10-4). Hence, neuroinflammation in PD and peripheral nerve damage due to inflammation in T1R share overlapping genetic control of pathogenicity.


Asunto(s)
Lepra , Proteína 2 Quinasa Serina-Treonina Rica en Repeticiones de Leucina , Mutación , Enfermedad de Parkinson , Ubiquitina-Proteína Ligasas , Femenino , Humanos , Lepra/genética , Lepra/metabolismo , Lepra/patología , Proteína 2 Quinasa Serina-Treonina Rica en Repeticiones de Leucina/genética , Proteína 2 Quinasa Serina-Treonina Rica en Repeticiones de Leucina/metabolismo , Masculino , Enfermedad de Parkinson/genética , Enfermedad de Parkinson/metabolismo , Enfermedad de Parkinson/patología , Ubiquitina-Proteína Ligasas/genética , Ubiquitina-Proteína Ligasas/metabolismo
20.
PLoS Genet ; 13(8): e1006952, 2017 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-28793313

RESUMEN

Leprosy is a human infectious disease caused by Mycobacterium leprae. A strong host genetic contribution to leprosy susceptibility is well established. However, the modulation of the transcriptional response to infection and the mechanism(s) of disease control are poorly understood. To address this gap in knowledge of leprosy pathogenicity, we conducted a genome-wide search for expression quantitative trait loci (eQTL) that are associated with transcript variation before and after stimulation with M. leprae sonicate in whole blood cells. We show that M. leprae antigen stimulation mainly triggered the upregulation of immune related genes and that a substantial proportion of the differential gene expression is genetically controlled. Indeed, using stringent criteria, we identified 318 genes displaying cis-eQTL at an FDR of 0.01, including 66 genes displaying response-eQTL (reQTL), i.e. cis-eQTL that showed significant evidence for interaction with the M. leprae stimulus. Such reQTL correspond to regulatory variations that affect the interaction between human whole blood cells and M. leprae sonicate and, thus, likely between the human host and M. leprae bacilli. We found that reQTL were significantly enriched among binding sites of transcription factors that are activated in response to infection, and that they were enriched among single nucleotide polymorphisms (SNPs) associated with susceptibility to leprosy per se and Type-I Reaction, and seven of them have been targeted by recent positive selection. Our study suggested that natural selection shaped our genomic diversity to face pathogen exposure including M. leprae infection.


Asunto(s)
Antígenos Bacterianos/inmunología , Lepra/genética , Sitios de Carácter Cuantitativo , Regulación hacia Abajo , Estudios de Asociación Genética , Predisposición Genética a la Enfermedad , Interacciones Huésped-Patógeno/genética , Humanos , Lepra/inmunología , Mycobacterium leprae , Polimorfismo de Nucleótido Simple , Análisis de Componente Principal , ARN Bacteriano/aislamiento & purificación , Regulación hacia Arriba
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...