Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 91
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
J Virol ; 98(10): e0104824, 2024 Oct 22.
Artículo en Inglés | MEDLINE | ID: mdl-39212384

RESUMEN

Pseudorabies virus (PRV) utilizes multiple strategies to inhibit type I interferon (IFN-I) production and signaling to achieve innate immune evasion. Among several other functions, mitochondria serve as a crucial immune hub in the initiation of innate antiviral responses. It is currently unknown whether PRV inhibits innate immune responses by manipulating mitochondria. In this study, we found that PRV infection damages mitochondrial structure and function, as shown by mitochondrial membrane potential depolarization, reduction in mitochondrial numbers, and an imbalance in mitochondrial dynamics. In addition, PRV infection triggered PINK1-Parkin-mediated mitophagy to eliminate the impaired mitochondria, which resulted in a suppression of IFN-I production, thereby promoting viral replication. Furthermore, we found that mitophagy resulted in the degradation of the mitochondrial antiviral signaling protein, which is located on the mitochondrial outer membrane. In conclusion, the data of the current study indicate that PRV-induced mitophagy represents a previously uncharacterized PRV evasion mechanism of the IFN-I response, thereby promoting virus replication.IMPORTANCEPseudorabies virus (PRV), a pathogen that induces different disease symptoms and is often fatal in domestic animals and wildlife, has caused great economic losses to the swine industry. Since 2011, different PRV variant strains have emerged in Asia, against which current commercial vaccines may not always provide optimal protection in pigs. In addition, there are indications that some of these PRV variant strains may sporadically infect people. In the current study, we found that PRV infection causes mitochondria injury. This is associated with the induction of mitophagy to eliminate the damaged mitochondria, which results in suppressed antiviral interferon production and signaling. Hence, our study reveals a novel mechanism that is used by PRV to antagonize the antiviral host immune response, providing a theoretical basis that may contribute to the research toward and development of new vaccines and antiviral drugs.


Asunto(s)
Herpesvirus Suido 1 , Inmunidad Innata , Interferón Tipo I , Mitocondrias , Mitofagia , Seudorrabia , Replicación Viral , Animales , Herpesvirus Suido 1/fisiología , Herpesvirus Suido 1/inmunología , Seudorrabia/virología , Seudorrabia/inmunología , Seudorrabia/metabolismo , Mitocondrias/metabolismo , Porcinos , Interferón Tipo I/metabolismo , Proteínas Quinasas/metabolismo , Proteínas Quinasas/genética , Humanos , Ubiquitina-Proteína Ligasas/metabolismo , Ubiquitina-Proteína Ligasas/genética , Línea Celular , Transducción de Señal , Evasión Inmune
3.
Front Immunol ; 14: 1219078, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37662951

RESUMEN

Liver-resident NK (lrNK) cells have been studied in humans as well as in mice. Unfortunately, important differences have been observed between murine and human lrNK cells, complicating the extrapolation of data obtained in mice to man. We previously described two NK cell subsets in the porcine liver: A CD8αhigh subset, with a phenotype much like conventional CD8αhigh NK cells found in the peripheral blood, and a specific liver-resident CD8αdim subset which phenotypically strongly resembles human lrNK cells. These data suggest that the pig might be an attractive model for studying lrNK cell biology. In the current study, we used RNA-seq to compare the transcriptome of three porcine NK cell populations: Conventional CD8αhigh NK cells from peripheral blood (cNK cells), CD8αhigh NK cells isolated from the liver, and the liver-specific CD8αdim NK cells. We found that highly expressed transcripts in the CD8αdim lrNK cell population mainly include genes associated with the (adaptive) immune response, whereas transcripts associated with cell migration and extravasation are much less expressed in this subset compared to cNK cells. Overall, our data indicate that CD8αdim lrNK cells show an immature and anti-inflammatory phenotype. Interestingly, we also observed that the CD8αhigh NK cell population that is present in the liver appears to represent a population with an intermediate phenotype. Indeed, while the transcriptome of these cells largely overlaps with that of cNK cells, they also express transcripts associated with liver residency, in particular CXCR6. The current, in-depth characterization of the transcriptome of porcine liver NK cell populations provides a basis to use the pig model for research into liver-resident NK cells.


Asunto(s)
Células Asesinas Naturales , Transcriptoma , Animales , Humanos , Perfilación de la Expresión Génica , Hígado , Fenotipo , Porcinos
4.
iScience ; 26(8): 107310, 2023 Aug 18.
Artículo en Inglés | MEDLINE | ID: mdl-37575180

RESUMEN

The mechanisms by which viruses regulate host mRNAs during infection are still poorly understood. Several host transcripts that encode proteins that contribute to the anti-viral response contain the N6-methyladenosine nucleotide (m6A). In this study, we investigated if and how viruses from different (sub) families specifically affect m6A-containing host transcripts. Systematic analysis of host transcriptomes after infection with diverse types of viruses showed that m6A-methylated transcripts are selectively downregulated during infection with Sendai virus, African swine fever virus and the alphaherpesviruses herpes simplex virus 1 (HSV-1) and pseudorabies virus (PRV). Focusing on PRV and HSV-1, we found that downregulation of m6A-methylated transcripts depends on the YTHDF family of m6A-binding proteins, and correlates with localization of these proteins to enlarged P-bodies. Knockdown of YTHDF proteins in primary cells reduced PRV protein expression and increased expression of antiviral interferon-stimulated genes, suggesting that virus-induced depletion of host m6A-containing transcripts constitutes an immune evasion strategy.

5.
Microbiol Spectr ; 11(4): e0142123, 2023 08 17.
Artículo en Inglés | MEDLINE | ID: mdl-37466427

RESUMEN

Alphaherpesvirus infection is associated with attenuation of different aspects of the host innate immune response that is elicited to confine primary infections at the mucosal epithelia. Here, we report that infection of epithelial cells with several alphaherpesviruses of different species, including herpes simplex virus 1 and 2 (HSV-1 and HSV-2), feline alphaherpesvirus 1 (FHV-1), and bovine alphaherpesvirus 1 (BoHV-1) results in the inactivation of the responses driven by the nuclear factor kappa B (NF-κB) pathway, considered a pillar of the innate immune response. The mode to interact with and circumvent NF-κB-driven responses in infected epithelial cells is seemingly conserved in human, feline, and porcine alphaherpesviruses, consisting of a persistent activation of the NF-κB cascade but a potent repression of NF-κB-dependent transcription activity, which relies on replication of viral genomes. However, BoHV-1 apparently deviates from the other investigated members of the taxon in this respect, as BoHV-1-infected epithelial cells do not display the persistent NF-κB activation observed for the other alphaherpesviruses. In conclusion, this study suggests that inhibition of NF-κB transcription activity is a strategy used by several alphaherpesviruses to prevent NF-κB-driven responses in infected epithelial cells. IMPORTANCE The current study provides a side-by-side comparison of the interaction of different alphaherpesviruses with NF-κB, a key and central player in the (proinflammatory) innate host response, in infected nontransformed epithelial cell lines. We report that all studied viruses prevent expression of the hallmark NF-κB-dependent gene IκB, often but not always via similar strategies, pointing to suppression of NF-κB-dependent host gene expression in infected epithelial cells as a common and therefore likely important aspect of alphaherpesviruses.


Asunto(s)
Células Epiteliales , FN-kappa B , Animales , Gatos , Humanos , Porcinos , FN-kappa B/genética , FN-kappa B/metabolismo , Línea Celular , Células Epiteliales/metabolismo , Inmunidad Innata , Expresión Génica
6.
Methods Protoc ; 6(3)2023 May 27.
Artículo en Inglés | MEDLINE | ID: mdl-37367999

RESUMEN

Protein phosphorylation is a ubiquitous post-translational modification that regulates a plethora of intracellular processes, making its analysis crucial for understanding intracellular dynamics. The commonly used methods, such as radioactive labeling and gel electrophoresis, do not provide information about subcellular localization. Immunofluorescence using phospho-specific antibodies and subsequent analysis via microscopy allows researchers to assess subcellular localization, but it typically lacks validation whether the observed fluorescent signal is phosphorylation specific. In this study, an on-slide dephosphorylation assay coupled with immunofluorescence staining using phospho-specific antibodies on fixed samples is proposed as a fast and simple approach to validate phosphorylated proteins in their native subcellular context. The assay was validated using antibodies against two different phosphorylated target proteins, connexin 43 phosphorylated at serine 373, and phosphorylated substrates of protein kinase A, with a dramatic reduction in the signal upon dephosphorylation. The proposed approach provides a convenient way to validate phosphorylated proteins without the need for additional sample preparation steps, reducing the time and effort required for analysis, while minimizing the risk of protein loss or alteration.

7.
J Virol ; 96(24): e0115822, 2022 12 21.
Artículo en Inglés | MEDLINE | ID: mdl-36453884

RESUMEN

Pseudorabies virus (PRV) is a member of the alphaherpesvirus subfamily and the causative agent of Aujeszky's disease in pigs. Driven by the large economic losses associated with PRV infection, several vaccines and vaccine programs have been developed. To this day, the attenuated Bartha strain, generated by serial passaging, represents the golden standard for PRV vaccination. However, a proteomic comparison of the Bartha virion to wild-type (WT) PRV virions is lacking. Here, we present a comprehensive mass spectrometry-based proteome comparison of the attenuated Bartha strain and three commonly used WT PRV strains: Becker, Kaplan, and NIA3. We report the detection of 40 structural and 14 presumed nonstructural proteins through a combination of data-dependent and data-independent acquisition. Interstrain comparisons revealed that packaging of the capsid and most envelope proteins is largely comparable in-between all four strains, except for the envelope protein pUL56, which is less abundant in Bartha virions. However, distinct differences were noted for several tegument proteins. Most strikingly, we noted a severely reduced incorporation of the tegument proteins IE180, VP11/12, pUS3, VP22, pUL41, pUS1, and pUL40 in Bartha virions. Moreover, and likely as a consequence, we also observed that Bartha virions are on average smaller and more icosahedral compared to WT virions. Finally, we detected at least 28 host proteins that were previously described in PRV virions and noticed considerable strain-specific differences with regard to host proteins, arguing that the potential role of packaged host proteins in PRV replication and spread should be further explored. IMPORTANCE The pseudorabies virus (PRV) vaccine strain Bartha-an attenuated strain created by serial passaging-represents an exceptional success story in alphaherpesvirus vaccination. Here, we used mass spectrometry to analyze the Bartha virion composition in comparison to three established WT PRV strains. Many viral tegument proteins that are considered nonessential for viral morphogenesis were drastically less abundant in Bartha virions compared to WT virions. Interestingly, many of the proteins that are less incorporated in Bartha participate in immune evasion strategies of alphaherpesviruses. In addition, we observed a reduced size and more icosahedral morphology of the Bartha virions compared to WT PRV. Given that the Bartha vaccine strain elicits potent immune responses, our findings here suggest that differences in protein packaging may contribute to its immunogenicity. Further exploration of these observations could aid the development of efficacious vaccines against other alphaherpesvirus vaccines such as HSV-1/2 or EHV-1.


Asunto(s)
Herpesvirus Suido 1 , Seudorrabia , Enfermedades de los Porcinos , Vacunas Virales , Animales , Cápside/metabolismo , Herpesvirus Suido 1/metabolismo , Proteómica , Seudorrabia/prevención & control , Porcinos , Enfermedades de los Porcinos/prevención & control , Enfermedades de los Porcinos/virología , Proteínas Virales/inmunología , Vacunas Atenuadas/inmunología , Vacunas Virales/inmunología
8.
Front Immunol ; 13: 1016982, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36405751

RESUMEN

Type I and III Interferons (IFNs) are the initial antiviral cytokines produced in response to virus infection. These IFNs in turn bind to their respective receptors, trigger JAK-STAT signaling and induce the expression of IFN-stimulated genes (ISGs) to engage antiviral functions. Unlike the receptor for type I IFNs, which is broadly expressed, the expression of the type III IFN receptor is mainly confined to epithelial cells that line mucosal surfaces. Accumulating evidence has shown that type III IFNs may play a unique role in protecting mucosal surfaces against viral challenges. The porcine alphaherpesvirus pseudorabies virus (PRV) causes huge economic losses to the pig industry worldwide. PRV first replicates in the respiratory tract, followed by spread via neurons and via lymph and blood vessels to the central nervous system and internal organs, e.g. the kidney, lungs and intestinal tract. In this study, we investigate whether PRV triggers the expression of type I and III IFNs and whether these IFNs exert antiviral activity against PRV in different porcine epithelial cells: porcine kidney epithelial cells (PK-15), primary respiratory epithelial cells (PoREC) and intestinal porcine epithelial cells (IPEC-J2). We show that PRV triggers a multiplicity of infection-dependent type I IFN response and a prominent III IFN response in PK-15 cells, a multiplicity of infection-dependent expression of both types of IFN in IPEC-J2 cells and virtually no expression of either IFN in PoREC. Pretreatment of the different cell types with equal amounts of porcine IFN-λ3 (type III IFN) or porcine IFN-α (type I IFN) showed that IFN-α, but not IFN-λ3, suppressed PRV replication and spread in PK-15 cells, whereas the opposite was observed in IPEC-J2 cells and both types of IFN showed anti-PRV activity in PoREC cells, although the antiviral activity of IFN-α was more potent than that of IFN-λ3 in the latter cell type. In conclusion, the current data show that PRV-induced type I and III IFN responses and their antiviral activity depend to a large extent on the epithelial cell type used, and for the first time show that type III IFN displays antiviral activity against PRV in epithelial cells from the respiratory and particularly the intestinal tract.


Asunto(s)
Herpesvirus Suido 1 , Porcinos , Animales , Antivirales/farmacología , Células Epiteliales , Interferón-alfa , Interferón lambda
10.
Cell Rep ; 40(3): 111107, 2022 07 19.
Artículo en Inglés | MEDLINE | ID: mdl-35858564

RESUMEN

Chemical modifications of mRNA, the so-called epitranscriptome, represent an additional layer of post-transcriptional regulation of gene expression. The most common epitranscriptomic modification, N6-methyladenosine (m6A), is generated by a multi-subunit methyltransferase complex. We show that alphaherpesvirus kinases trigger phosphorylation of several components of the m6A methyltransferase complex, including METTL3, METTL14, and WTAP, which correlates with inhibition of the complex and a near complete loss of m6A levels in mRNA of virus-infected cells. Expression of the viral US3 protein is necessary and sufficient for phosphorylation and inhibition of the m6A methyltransferase complex. Although m6A methyltransferase complex inactivation is not essential for virus replication in cell culture, the consensus m6A methylation motif is under-represented in alphaherpesvirus genomes, suggesting evolutionary pressure against methylation of viral transcripts. Together, these findings reveal that phosphorylation can be associated with inactivation of the m6A methyltransferase complex, in this case mediated by the viral US3 protein.


Asunto(s)
Adenosina , Metiltransferasas , Adenosina/metabolismo , Metilación , Metiltransferasas/genética , Metiltransferasas/metabolismo , ARN Mensajero/genética , ARN Mensajero/metabolismo , Proteínas Virales/genética , Proteínas Virales/metabolismo
11.
J Virol ; 96(13): e0071422, 2022 07 13.
Artículo en Inglés | MEDLINE | ID: mdl-35730976

RESUMEN

Pseudorabies virus (PRV) is a porcine alphaherpesvirus that belongs to the Herpesviridae family. We showed earlier that infection of porcine epithelial cells with PRV triggers activation of the nuclear factor κB (NF-κB) pathway, a pivotal signaling axis in the early immune response. However, PRV-induced NF-κB activation does not lead to NF-κB-dependent gene expression. Here, using electrophoretic mobility shift assays (EMSAs), we show that PRV does not disrupt the ability of NF-κB to interact with its κB target sites. Assessing basal cellular transcriptional activity in PRV-infected cells by quantitation of prespliced transcripts of constitutively expressed genes uncovered a broad suppression of cellular transcription by PRV, which also affects the inducible expression of NF-κB target genes. Host cell transcription inhibition was rescued when viral genome replication was blocked using phosphonoacetic acid (PAA). Remarkably, we found that host gene expression shutoff in PRV-infected cells correlated with a substantial retention of the NF-κB subunit p65, the TATA box binding protein, and RNA polymerase II-essential factors required for (NF-κB-dependent) gene transcription-in expanding PRV replication centers in the nucleus and thereby away from the host chromatin. This study reveals a potent mechanism used by the alphaherpesvirus PRV to steer the protein production capacity of infected cells to viral proteins by preventing expression of host genes, including inducible genes involved in mounting antiviral responses. IMPORTANCE Herpesviruses are highly successful pathogens that cause lifelong persistent infections of their host. Modulation of the intracellular environment of infected cells is imperative for the success of virus infections. We reported earlier that a DNA damage response in epithelial cells infected with the alphaherpesvirus pseudorabies virus (PRV) results in activation of the hallmark proinflammatory NF-κB signaling axis but, remarkably, that this activation does not lead to NF-κB-induced (proinflammatory) gene expression. Here, we report that PRV-mediated inhibition of host gene expression stretches beyond NF-κB-dependent gene expression and in fact reflects a broad inhibition of host gene transcription, which correlates with a substantial recruitment of essential host transcription factors in viral replication compartments in the nucleus, away from the host chromatin. These data uncover a potent alphaherpesvirus mechanism to interfere with production of host proteins, including proteins involved in antiviral responses.


Asunto(s)
Herpesvirus Suido 1 , Seudorrabia , Enfermedades de los Porcinos , Transcripción Genética , Animales , Herpesvirus Suido 1/fisiología , Interacciones Microbiota-Huesped , FN-kappa B/genética , FN-kappa B/metabolismo , Seudorrabia/inmunología , Seudorrabia/fisiopatología , Porcinos , Enfermedades de los Porcinos/inmunología , Enfermedades de los Porcinos/fisiopatología
12.
J Virol ; 96(12): e0219921, 2022 06 22.
Artículo en Inglés | MEDLINE | ID: mdl-35604216

RESUMEN

Pseudorabies virus (PRV) is a porcine alphaherpesvirus and the causative agent of Aujeszky's disease. Successful eradication campaigns against PRV have largely relied on the use of potent PRV vaccines. The live attenuated Bartha strain, which was produced by serial passaging in cell culture, represents one of the hallmark PRV vaccines. Despite the robust protection elicited by Bartha vaccination, very little is known about the immunogenicity of the Bartha strain. Previously, we showed that Bartha-infected epithelial cells trigger plasmacytoid dendritic cells (pDC) to produce much higher levels of type I interferons than cells infected with wild-type PRV. Here, we show that this Bartha-induced pDC hyperactivation extends to other important cytokines, including interleukin-12/23 (IL-12/23) and tumor necrosis factor alpha (TNF-α) but not IL-6. Moreover, Bartha-induced pDC hyperactivation was found to be due to the strongly increased production of extracellular infectious virus (heavy particles [H-particles]) early in infection of epithelial cells, which correlated with a reduced production of noninfectious light particles (L-particles). The Bartha genome is marked by a large deletion in the US region affecting the genes encoding US7 (gI), US8 (gE), US9, and US2. The deletion of the US2 and gE/gI genes was found to be responsible for the observed increase in extracellular virus production by infected epithelial cells and the resulting increased pDC activation. The deletion of gE/gI also suppressed L-particle production. In conclusion, the deletion of US2 and gE/gI in the genome of the PRV vaccine strain Bartha results in the enhanced production of extracellular infectious virus in infected epithelial cells and concomitantly leads to the hyperactivation of pDC. IMPORTANCE The pseudorabies virus (PRV) vaccine strain Bartha has been and still is critical in the eradication of PRV in numerous countries. However, little is known about how this vaccine strain interacts with host cells and the host immune system. Here, we report the surprising observation that Bartha-infected epithelial porcine cells rapidly produce increased amounts of extracellular infectious virus compared to wild-type PRV-infected cells, which in turn potently stimulate porcine plasmacytoid dendritic cells (pDC). We found that this phenotype depends on the deletion of the genes encoding US2 and gE/gI. We also found that Bartha-infected cells secrete fewer pDC-inhibiting light particles (L-particles), which appears to be caused mainly by the deletion of the genes encoding gE/gI. These data generate novel insights into the interaction of the successful Bartha vaccine with epithelial cells and pDC and may therefore contribute to the development of vaccines against other (alphaherpes)viruses.


Asunto(s)
Células Dendríticas , Herpesvirus Suido 1 , Seudorrabia , Enfermedades de los Porcinos , Animales , Células Dendríticas/inmunología , Herpesvirus Suido 1/genética , Inmunogenicidad Vacunal , Seudorrabia/prevención & control , Vacunas contra la Seudorrabia/genética , Porcinos , Enfermedades de los Porcinos/prevención & control , Vacunas Atenuadas , Proteínas del Envoltorio Viral/genética
13.
Front Cell Infect Microbiol ; 12: 834888, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35281443

RESUMEN

In humans, Japanese encephalitis virus (JEV) causes a devastating neurotropic disease with high mortality, whereas in pigs, the virus only causes mild symptoms. Besides tropism to the central nervous system, JEV seems to harbor a particular tropism for the tonsils in pigs. This secondary lymphoid organ appears to act as a reservoir for the virus, and we show that it is found up to 21 days post infection at high viral titers. The immune response in the tonsils was studied over time upon intradermal inoculation of pigs. Entry of the virus in the tonsils was accompanied by a significant increase in anti-viral OAS1 and IFNß mRNA expression. This limited antiviral response was, however, not sufficient to stop JEV replication, and importantly, no IFNγ or innate inflammatory cytokine mRNA expression could be observed. Strikingly, the persistence of JEV in tonsils was also associated with a significant decreased frequency of CD4+CD8+ double-positive T lymphocytes. Furthermore, it is important to note that JEV persistence in tonsils occurred despite a strong induction of the adaptive immune response. JEV-specific antibodies were found after 6 days post infection in serum, and cell-mediated immune responses upon NS3 restimulation of PBMCs from experimentally infected pigs showed that CD4+CD8+ double-positive T cells were found to display the most prominent proliferation and IFNγ production among lymphocyte subtypes. Taken together, these results suggest that an inadequate induction of the innate immune response and the absence of an IFNγ antiviral response contribute to the persistence of JEV in the tonsils and is associated with a decrease in the frequency of CD4+CD8+ double-positive T cells.


Asunto(s)
Virus de la Encefalitis Japonesa (Especie) , Encefalitis Japonesa , Animales , Linfocitos T CD8-positivos , Inmunidad Innata , Tonsila Palatina , ARN Mensajero , Porcinos , Linfocitos T
14.
PLoS Pathog ; 17(11): e1010117, 2021 11.
Artículo en Inglés | MEDLINE | ID: mdl-34843605

RESUMEN

Plasmacytoid dendritic cells (pDC) are important innate immune cells during the onset of viral infections as they are specialized in the production of massive amounts of antiviral type I interferon (IFN). Alphaherpesviruses such as herpes simplex virus (HSV) or pseudorabies virus (PRV) are double stranded DNA viruses and potent stimulators of pDC. Detailed information on how PRV activates porcine pDC is lacking. Using PRV and porcine primary pDC, we report here that PRV virions, so-called heavy (H-)particles, trigger IFNα production by pDC, whereas light (L-) particles that lack viral DNA and capsid do not. Activation of pDC requires endosomal acidification and, importantly, depends on the PRV gD envelope glycoprotein and O-glycosylations. Intriguingly, both for PRV and HSV-1, we found that L-particles suppress H-particle-mediated activation of pDC, a process which again depends on viral gD. This is the first report describing that gD plays a critical role in alphaherpesvirus-induced pDC activation and that L-particles directly interfere with alphaherpesvirus-induced IFNα production by pDC.


Asunto(s)
Células Dendríticas/inmunología , Herpes Simple/inmunología , Interferón Tipo I/metabolismo , Seudorrabia/inmunología , Proteínas del Envoltorio Viral/metabolismo , Virión/fisiología , Animales , Células Dendríticas/metabolismo , Células Dendríticas/virología , Herpes Simple/metabolismo , Herpes Simple/virología , Herpesvirus Humano 1/fisiología , Herpesvirus Suido 1/fisiología , Masculino , Seudorrabia/metabolismo , Seudorrabia/virología , Porcinos , Testículo/inmunología , Testículo/metabolismo , Testículo/virología , Proteínas del Envoltorio Viral/genética
15.
J Virol ; 95(24): e0166621, 2021 11 23.
Artículo en Inglés | MEDLINE | ID: mdl-34613805

RESUMEN

The nuclear factor kappa B (NF-κB) pathway is known to integrate signaling associated with very diverse intra- and extracellular stressors, including virus infections, and triggers a powerful (proinflammatory) response through the expression of NF-κB-regulated genes. Typically, the NF-κB pathway collects and transduces threatening signals at the cell surface or in the cytoplasm leading to nuclear import of activated NF-κB transcription factors. In the current work, we demonstrate that the swine alphaherpesvirus pseudorabies virus (PRV) induces a peculiar mode of NF-κB activation known as "inside-out" NF-κB activation. We show that PRV triggers the DNA damage response (DDR) and that this DDR response drives NF-κB activation since inhibition of the nuclear ataxia telangiectasia-mutated (ATM) kinase, a chief controller of DDR, abolished PRV-induced NF-κB activation. Initiation of the DDR-NF-κB signaling axis requires viral protein synthesis but occurs before active viral genome replication. In addition, the initiation of the DDR-NF-κB signaling axis is followed by a virus-induced complete shutoff of NF-κB-dependent gene expression that depends on viral DNA replication. In summary, the results presented in this study reveal that PRV infection triggers a noncanonical DDR-NF-κB activation signaling axis and that the virus actively inhibits the (potentially antiviral) consequences of this pathway, by inhibiting NF-κB-dependent gene expression. IMPORTANCE The NF-κB signaling pathway plays a critical role in coordination of innate immune responses that are of vital importance in the control of infections. The current report generates new insights into the interaction of the alphaherpesvirus pseudorabies virus (PRV) with the NF-κB pathway, as they reveal that (i) PRV infection leads to NF-κB activation via a peculiar "inside-out" nucleus-to-cytoplasm signal that is triggered via the DNA damage response (DDR), (ii) the DDR-NF-κB signaling axis requires expression of viral proteins but is initiated before active PRV replication, and (iii) late viral factor(s) allow PRV to actively and efficiently inhibit NF-κB-dependent (proinflammatory) gene expression. These data suggest that activation of the DDR-NF-κB during PRV infection is host driven and that its potential antiviral consequences are actively inhibited by the virus.


Asunto(s)
Daño del ADN/genética , Expresión Génica , Herpesvirus Suido 1/patogenicidad , Interacciones Microbiota-Huesped/genética , FN-kappa B/genética , Animales , Línea Celular , Células Cultivadas , Replicación del ADN , Herpesvirus Suido 1/genética , Masculino , Transducción de Señal/genética , Porcinos , Testículo/citología , Replicación Viral/genética
16.
J Virol ; 95(20): e0079321, 2021 09 27.
Artículo en Inglés | MEDLINE | ID: mdl-34379505

RESUMEN

Both type I and III interferons (IFNs) play a crucial role in host antiviral response by activating the JAK/STAT (Janus kinase/signal transducer and activator of transcription) signaling pathway to trigger the expression of antiviral IFN-stimulated genes (ISGs). We report that the porcine alphaherpesvirus pseudorabies virus (PRV) triggers proteasomal degradation of the key Janus kinases Jak1 and to a lesser extent Tyk2, thereby inhibiting both type I and III IFN-induced STAT1 phosphorylation and suppressing IFN-induced expression of ISGs. UV-inactivated PRV did not interfere with IFN signaling. In addition, deletion of the EP0 gene from the PRV genome or inhibition of viral genome replication did not affect PRV-induced inhibition of IFN signaling. To our knowledge, this is the first report describing Janus kinase degradation by alphaherpesviruses. These findings thus reveal a novel alphaherpesvirus evasion mechanism of type I and type III IFNs. IMPORTANCE Type I and III interferons (IFNs) trigger signaling via Janus kinases that phosphorylate and activate signal transducer and activator of transcription (STAT) transcription factors, leading to the expression of antiviral interferon-stimulated genes (ISGs) that result in an antiviral state of host cells. Viruses have evolved various mechanisms to evade this response. Our results indicate that an alphaherpesvirus, the porcine pseudorabies virus (PRV), inhibits both type I and III IFN signaling pathways by triggering proteasome-dependent degradation of the key Janus kinases Jak1 and Tyk2 and consequent inhibition of STAT1 phosphorylation and suppression of ISG expression. Moreover, we found that this inhibition is not caused by incoming virions and does not depend on expression of the viral EP0 protein or viral true late proteins. These data for the first time address alphaherpesvirus evasion of type III IFN-mediated signaling and reveal a previously uncharacterized alphaherpesvirus mechanism of IFN evasion via proteasomal degradation of Janus kinases.


Asunto(s)
Herpesvirus Suido 1/metabolismo , Quinasas Janus/metabolismo , Animales , Antivirales/farmacología , Línea Celular , Herpesvirus Suido 1/genética , Herpesvirus Suido 1/patogenicidad , Humanos , Interferón Tipo I/antagonistas & inhibidores , Interferón Tipo I/metabolismo , Interferones/antagonistas & inhibidores , Interferones/metabolismo , Janus Quinasa 1/metabolismo , Quinasas Janus/fisiología , Fosforilación , Complejo de la Endopetidasa Proteasomal/metabolismo , Proteolisis , Factor de Transcripción STAT1/metabolismo , Transducción de Señal/fisiología , Porcinos , TYK2 Quinasa/metabolismo , Proteínas Virales/metabolismo , Replicación Viral/efectos de los fármacos , Interferón lambda
17.
Exerc Immunol Rev ; 27: 84-124, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33965901

RESUMEN

BACKGROUND: Toll-like receptors (TLRs) are a family of transmembrane pattern recognition receptors that are mainly expressed on immune cells. Recognition of various exogenous and endogenous molecular patterns activates the TLR signalling cascade, which orchestrates an inflammatory immune response. Dysfunctional immune responses, including aberrant TLR signalling, are increasingly implicated in the associations between sedentarism, chronic low-grade systemic inflammation and various non-communicable diseases. Conversely, exercise exerts anti-inflammatory effects, which could be conferred through its immunomodulatory properties, potentially affecting TLRs. This study aims to systematically review the effects of exercise on human TLR expression. METHOD: A systematic literature search of Pubmed, Embase, The Cochrane Library and SPORTDiscus for articles addressing the impact of exercise (as isolated intervention) on TLRs in humans was conducted, ending in February 2020. RESULTS: A total of 66 articles were included. The publications were categorised according to exercise modality and duration: acute resistance exercise (4 studies), acute aerobic exercise (26 studies), resistance training program (9 studies), aerobic training program (16 studies), combined (i.e. resistance and aerobic) training program (8 studies) and chronic exercise not otherwise classifiable (9 studies). Five articles investigated more than one of the aforementioned exercise categories. Several trends could be discerned with regard to the TLR response in the different exercise categories. Acute resistance exercise seemed to elicit TLR upregulation, whereas acute aerobic exercise had less activating potential with the majority of responses being neutral or, especially in healthy participants, downregulatory. Chronic resistance and combined exercise programs predominantly resulted in unaltered or decreased TLR levels. In the chronic aerobic exercise category, mixed effects were observed, but the majority of measurements demonstrated unchanged TLR expression. CONCLUSION: Currently published research supports an interplay between exercise and TLR signalling, which seems to depend on the characteristics of the exercise. However, there was large heterogeneity in the study designs and methodologies. Therefore, additional research is required to further corroborate these findings, to define its pathophysiological implications and to elucidate the mechanism(s) linking exercise to TLR signalling.


Asunto(s)
Ejercicio Físico , Entrenamiento de Fuerza , Receptores Toll-Like , Humanos , Receptores de Reconocimiento de Patrones , Transducción de Señal
18.
Front Immunol ; 12: 634402, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33679785

RESUMEN

Beta-glucans are naturally occurring polysaccharides present in cell walls of fungi, yeast, bacteria, cereals, seaweed, and algae. These microbe-associated molecular patterns (MAMPs) possess immunomodulatory properties. In human, it has been suggested that NK cells can be activated by ß-glucans. Here, we aimed to elucidate whether ß-glucans modulate porcine NK cell responses in vitro and if so, how these effects are mediated. We investigated the effect of two ß-glucans, Macrogard and Curdlan, which differ in solubility and structure. Direct addition of ß-glucans to purified porcine NK cells did not affect cytotoxicity of these cells against K562 target cells. However, when using PBMC instead of purified NK cells, ß-glucan addition significantly increased NK cell-mediated cytotoxicity. This effect depended on factors secreted by CD14+ monocytes upon ß-glucan priming. Further analysis showed that monocytes secrete TNF-α, IL-6, and IL-10 upon ß-glucan addition. Of these, IL-10 turned out to play a critical role in ß-glucan-triggered NK cell cytotoxicity, since depletion of IL-10 completely abrogated the ß-glucan-induced increase in cytotoxicity. Furthermore, addition of recombinant IL-10 to purified NK cells was sufficient to enhance cytotoxicity. In conclusion, we show that ß-glucans trigger IL-10 secretion by porcine monocytes, which in turn leads to increased NK cell cytotoxicity, and thereby identify IL-10 as a potent stimulus of porcine NK cell cytotoxicity.


Asunto(s)
Citotoxicidad Inmunológica , Interleucina-10/metabolismo , Células Asesinas Naturales/inmunología , Leucemia Mielógena Crónica BCR-ABL Positiva/inmunología , Monocitos/efectos de los fármacos , Comunicación Paracrina , beta-Glucanos/farmacología , Animales , Técnicas de Cocultivo , Humanos , Células K562 , Células Asesinas Naturales/metabolismo , Leucemia Mielógena Crónica BCR-ABL Positiva/metabolismo , Leucemia Mielógena Crónica BCR-ABL Positiva/patología , Monocitos/inmunología , Monocitos/metabolismo , Vías Secretoras , Sus scrofa
19.
Viruses ; 13(2)2021 02 09.
Artículo en Inglés | MEDLINE | ID: mdl-33572245

RESUMEN

Herpesviruses display a complex and carefully balanced interaction with important players in the antiviral immune response of immunocompetent natural hosts, including natural killer (NK) cells. With regard to NK cells, this delicate balance is illustrated on the one hand by severe herpesvirus disease reported in individuals with NK cell deficiencies and on the other hand by several NK cell evasion strategies described for herpesviruses. In the current study, we report that porcine cells infected with the porcine alphaherpesvirus pseudorabies virus (PRV) display a rapid and progressive downregulation of ligands for the major activating NK cell receptor NKG2D. This downregulation consists both of a downregulation of NKG2D ligands that are already expressed on the cell surface of an infected cell and an inhibition of cell surface expression of newly expressed NKG2D ligands. Flow cytometry and RT-qPCR assays showed that PRV infection results in downregulation of the porcine NKG2D ligand pULBP1 from the cell surface and a very substantial suppression of mRNA expression of pULBP1 and of another potential NKG2D ligand, pMIC2. Furthermore, PRV-induced NKG2D ligand downregulation was found to be independent of late viral gene expression. In conclusion, we report that PRV infection of host cells results in a very pronounced downregulation of ligands for the activating NK cell receptor NKG2D, representing an additional NK evasion strategy of PRV.


Asunto(s)
Herpesvirus Suido 1/inmunología , Evasión Inmune , Subfamilia K de Receptores Similares a Lectina de Células NK/metabolismo , Antígeno 12E7/genética , Antígeno 12E7/metabolismo , Animales , Línea Celular , Regulación hacia Abajo , Proteínas Ligadas a GPI/genética , Proteínas Ligadas a GPI/metabolismo , Herpesvirus Suido 1/metabolismo , Ligandos , ARN Mensajero/genética , Porcinos
20.
Virol Sin ; 36(4): 577-587, 2021 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-33400088

RESUMEN

Type III interferons (IFNs) represent the most recently discovered group of IFNs. Together with type I IFNs (e.g. IFN-α/ß), type III IFNs (IFN-λ) are produced as part of the innate immune response to virus infection, and elicit an anti-viral state by inducing expression of interferon stimulated genes (ISGs). It was initially thought that type I IFNs and type III IFNs perform largely redundant functions. However, it has become evident that type III IFNs particularly play a major role in antiviral protection of mucosal epithelial barriers, thereby serving an important role in the first-line defense against virus infection and invasion at contact areas with the outside world, versus the generally more broad, potent and systemic antiviral effects of type I IFNs. Herpesviruseses are large DNA viruses, which enter their host via mucosal surfaces and establish lifelong, latent infections. Despite the importance of mucosal epithelial cells in the pathogenesis of herpesviruses, our current knowledge on the interaction of herpesviruses with type III IFN is limited and largely restricted to studies on the alphaherpesvirus herpes simplex virus (HSV). This review summarizes the current understanding about the role of IFN-λ in the immune response against herpesvirus infections.


Asunto(s)
Herpesviridae , Interferón Tipo I , Antivirales/farmacología , Interferones , Simplexvirus , Interferón lambda
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...