Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Glob Chang Biol ; 30(1): e17006, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-37909670

RESUMEN

Uncovering the mechanisms that lead to Amazon forest resilience variations is crucial to predict the impact of future climatic and anthropogenic disturbances. Here, we apply a previously used empirical resilience metrics, lag-1 month temporal autocorrelation (TAC), to vegetation optical depth data in C-band (a good proxy of the whole canopy water content) in order to explore how forest resilience variations are impacted by human disturbances and environmental drivers in the Brazilian Amazon. We found that human disturbances significantly increase the risk of critical transitions, and that the median TAC value is ~2.4 times higher in human-disturbed forests than that in intact forests, suggesting a much lower resilience in disturbed forests. Additionally, human-disturbed forests are less resilient to land surface heat stress and atmospheric water stress than intact forests. Among human-disturbed forests, forests with a more closed and thicker canopy structure, which is linked to a higher forest cover and a lower disturbance fraction, are comparably more resilient. These results further emphasize the urgent need to limit deforestation and degradation through policy intervention to maintain the resilience of the Amazon rainforests.


Asunto(s)
Bosque Lluvioso , Resiliencia Psicológica , Efectos Antropogénicos , Conservación de los Recursos Naturales/métodos , Bosques
2.
Nature ; 615(7952): 436-442, 2023 03.
Artículo en Inglés | MEDLINE | ID: mdl-36922608

RESUMEN

The globally important carbon sink of intact, old-growth tropical humid forests is declining because of climate change, deforestation and degradation from fire and logging1-3. Recovering tropical secondary and degraded forests now cover about 10% of the tropical forest area4, but how much carbon they accumulate remains uncertain. Here we quantify the aboveground carbon (AGC) sink of recovering forests across three main continuous tropical humid regions: the Amazon, Borneo and Central Africa5,6. On the basis of satellite data products4,7, our analysis encompasses the heterogeneous spatial and temporal patterns of growth in degraded and secondary forests, influenced by key environmental and anthropogenic drivers. In the first 20 years of recovery, regrowth rates in Borneo were up to 45% and 58% higher than in Central Africa and the Amazon, respectively. This is due to variables such as temperature, water deficit and disturbance regimes. We find that regrowing degraded and secondary forests accumulated 107 Tg C year-1 (90-130 Tg C year-1) between 1984 and 2018, counterbalancing 26% (21-34%) of carbon emissions from humid tropical forest loss during the same period. Protecting old-growth forests is therefore a priority. Furthermore, we estimate that conserving recovering degraded and secondary forests can have a feasible future carbon sink potential of 53 Tg C year-1 (44-62 Tg C year-1) across the main tropical regions studied.


Asunto(s)
Secuestro de Carbono , Carbono , Conservación de los Recursos Naturales , Bosques , Humedad , Árboles , Clima Tropical , Carbono/metabolismo , Conservación de los Recursos Naturales/métodos , Conservación de los Recursos Naturales/estadística & datos numéricos , Conservación de los Recursos Naturales/tendencias , Árboles/metabolismo , Agricultura Forestal/estadística & datos numéricos , Imágenes Satelitales , Temperatura , Bosque Lluvioso , Borneo , África Central , Brasil
3.
Glob Chang Biol ; 29(4): 1106-1118, 2023 02.
Artículo en Inglés | MEDLINE | ID: mdl-36415966

RESUMEN

In the Amazon, deforestation and climate change lead to increased vulnerability to forest degradation, threatening its existing carbon stocks and its capacity as a carbon sink. We use satellite L-Band Vegetation Optical Depth (L-VOD) data that provide an integrated (top-down) estimate of biomass carbon to track changes over 2011-2019. Because the spatial resolution of L-VOD is coarse (0.25°), it allows limited attribution of the observed changes. We therefore combined high-resolution annual maps of forest cover and disturbances with biomass maps to model carbon losses (bottom-up) from deforestation and degradation, and gains from regrowing secondary forests. We show an increase of deforestation and associated degradation losses since 2012 which greatly outweigh secondary forest gains. Degradation accounted for 40% of gross losses. After an increase in 2011, old-growth forests show a net loss of above-ground carbon between 2012 and 2019. The sum of component carbon fluxes in our model is consistent with the total biomass change from L-VOD of 1.3 Pg C over 2012-2019. Across nine Amazon countries, we found that while Brazil contains the majority of biomass stocks (64%), its losses from disturbances were disproportionately high (79% of gross losses). Our multi-source analysis provides a pessimistic assessment of the Amazon carbon balance and highlights the urgent need to stop the recent rise of deforestation and degradation, particularly in the Brazilian Amazon.


Asunto(s)
Conservación de los Recursos Naturales , Bosques , Biomasa , Secuestro de Carbono , Carbono/metabolismo
4.
Carbon Balance Manag ; 17(1): 15, 2022 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-36183029

RESUMEN

The Global Stocktake (GST), implemented by the Paris Agreement, requires rapid developments in the capabilities to quantify annual greenhouse gas (GHG) emissions and removals consistently from the global to the national scale and improvements to national GHG inventories. In particular, new capabilities are needed for accurate attribution of sources and sinks and their trends to natural and anthropogenic processes. On the one hand, this is still a major challenge as national GHG inventories follow globally harmonized methodologies based on the guidelines established by the Intergovernmental Panel on Climate Change, but these can be implemented differently for individual countries. Moreover, in many countries the capability to systematically produce detailed and annually updated GHG inventories is still lacking. On the other hand, spatially-explicit datasets quantifying sources and sinks of carbon dioxide, methane and nitrous oxide emissions from Earth Observations (EO) are still limited by many sources of uncertainty. While national GHG inventories follow diverse methodologies depending on the availability of activity data in the different countries, the proposed comparison with EO-based estimates can help improve our understanding of the comparability of the estimates published by the different countries. Indeed, EO networks and satellite platforms have seen a massive expansion in the past decade, now covering a wide range of essential climate variables and offering high potential to improve the quantification of global and regional GHG budgets and advance process understanding. Yet, there is no EO data that quantifies greenhouse gas fluxes directly, rather there are observations of variables or proxies that can be transformed into fluxes using models. Here, we report results and lessons from the ESA-CCI RECCAP2 project, whose goal was to engage with National Inventory Agencies to improve understanding about the methods used by each community to estimate sources and sinks of GHGs and to evaluate the potential for satellite and in-situ EO to improve national GHG estimates. Based on this dialogue and recent studies, we discuss the potential of EO approaches to provide estimates of GHG budgets that can be compared with those of national GHG inventories. We outline a roadmap for implementation of an EO carbon-monitoring program that can contribute to the Paris Agreement.

5.
Glob Chang Biol ; 26(3): 1608-1625, 2020 03.
Artículo en Inglés | MEDLINE | ID: mdl-31918454

RESUMEN

The mountain systems of the Hindu Kush Himalaya (HKH) are changing rapidly due to climatic change, but an overlooked component is the subnival ecosystem (between the treeline and snow line), characterized by short-stature plants and seasonal snow. Basic information about subnival vegetation distribution and rates of ecosystem change are not known, yet such information is needed to understand relationships between subnival ecology and water/carbon cycles. We show that HKH subnival ecosystems cover five to 15 times the area of permanent glaciers and snow, highlighting their eco-hydrological importance. Using satellite data from the Landsat 5, 7 and 8 missions, we measured change in the spatial extent of subnival vegetation from 1993 to 2018. The Landsat surface reflectance-derived Normalized Difference Vegetation Index product was thresholded at 0.1 to indicate the presence/absence of vegetation. Using this product, the strength and direction of time-series trends in the green pixel fraction were measured within three regions of interest. We controlled for cloud cover, snow cover and evaluated the impact of sensor radiometric differences between Landsat 7 and Landsat 8. Using Google Earth Engine to expedite data processing tasks, we show that there has been a weakly positive increase in the extent of subnival vegetation since 1993. Strongest and most significant trends were found in the height region of 5,000-5,500 m a.s.l. across the HKH extent: R2  = .302, Kendall's τ = 0.424, p < .05, but this varied regionally, with height, and according to the sensors included in the time series. Positive trends at lower elevations occurred on steeper slopes whilst at higher elevations, flatter areas exhibited stronger trends. We validated our findings using online photographs. Subnival ecological changes have likely impacted HKH carbon and water cycles with impacts on millions of people living downstream, but the strength and direction of impacts of vegetation expansion remain unknown.


Asunto(s)
Cambio Climático , Ecosistema , Ecología , Monitoreo del Ambiente , Plantas , Nieve
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...