Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Proc Natl Acad Sci U S A ; 120(14): e2218823120, 2023 04 04.
Artículo en Inglés | MEDLINE | ID: mdl-36996106

RESUMEN

Myelin is a multilayered membrane that tightly wraps neuronal axons, enabling efficient, high-speed signal propagation. The axon and myelin sheath form tight contacts, mediated by specific plasma membrane proteins and lipids, and disruption of these contacts causes devastating demyelinating diseases. Using two cell-based models of demyelinating sphingolipidoses, we demonstrate that altered lipid metabolism changes the abundance of specific plasma membrane proteins. These altered membrane proteins have known roles in cell adhesion and signaling, with several implicated in neurological diseases. The cell surface abundance of the adhesion molecule neurofascin (NFASC), a protein critical for the maintenance of myelin-axon contacts, changes following disruption to sphingolipid metabolism. This provides a direct molecular link between altered lipid abundance and myelin stability. We show that the NFASC isoform NF155, but not NF186, interacts directly and specifically with the sphingolipid sulfatide via multiple binding sites and that this interaction requires the full-length extracellular domain of NF155. We demonstrate that NF155 adopts an S-shaped conformation and preferentially binds sulfatide-containing membranes in cis, with important implications for protein arrangement in the tight axon-myelin space. Our work links glycosphingolipid imbalances to disturbance of membrane protein abundance and demonstrates how this may be driven by direct protein-lipid interactions, providing a mechanistic framework to understand the pathogenesis of galactosphingolipidoses.


Asunto(s)
Enfermedades Desmielinizantes , Sulfoglicoesfingolípidos , Humanos , Glicoesfingolípidos/metabolismo , Proteínas Portadoras/metabolismo , Factores de Crecimiento Nervioso/metabolismo , Vaina de Mielina/metabolismo , Moléculas de Adhesión Celular/metabolismo , Enfermedades Desmielinizantes/patología
2.
New Phytol ; 223(3): 1547-1559, 2019 08.
Artículo en Inglés | MEDLINE | ID: mdl-30980530

RESUMEN

The leaf outer epidermal cell wall acts as a barrier against pathogen attack and desiccation, and as such is covered by a cuticle, composed of waxes and the polymer cutin. Cutin monomers are formed by the transfer of fatty acids to glycerol by glycerol-3-phosphate acyltransferases, which facilitate their transport to the surface. The extent to which cutin monomers affect leaf cell wall architecture and barrier properties is not known. We report a dual functionality of pathogen-inducible GLYCEROL-3-PHOSPHATE ACYLTRANSFERASE 6 (GPAT6) in controlling pathogen entry and cell wall properties affecting dehydration in leaves. Silencing of Nicotiana benthamiana NbGPAT6a increased leaf susceptibility to infection by the oomycetes Phytophthora infestans and Phytophthora palmivora, whereas overexpression of NbGPAT6a-GFP rendered leaves more resistant. A loss-of-function mutation in tomato SlGPAT6 similarly resulted in increased susceptibility of leaves to Phytophthora infection, concomitant with changes in haustoria morphology. Modulation of GPAT6 expression altered the outer wall diameter of leaf epidermal cells. Moreover, we observed that tomato gpat6-a mutants had an impaired cell wall-cuticle continuum and fewer stomata, but showed increased water loss. This study highlights a hitherto unknown role for GPAT6-generated cutin monomers in influencing epidermal cell properties that are integral to leaf-microbe interactions and in limiting dehydration.


Asunto(s)
Aciltransferasas/metabolismo , Pared Celular/metabolismo , Nicotiana/metabolismo , Epidermis de la Planta/microbiología , Hojas de la Planta/microbiología , Proteínas de Plantas/metabolismo , Solanum lycopersicum/metabolismo , Botrytis/fisiología , Pared Celular/ultraestructura , Resistencia a la Enfermedad/inmunología , Regulación de la Expresión Génica de las Plantas , Solanum lycopersicum/genética , Solanum lycopersicum/microbiología , Phytophthora/fisiología , Enfermedades de las Plantas/inmunología , Enfermedades de las Plantas/microbiología , Epidermis de la Planta/metabolismo , Epidermis de la Planta/ultraestructura , Hojas de la Planta/metabolismo , Hojas de la Planta/ultraestructura , Estomas de Plantas/metabolismo , Estomas de Plantas/microbiología , Estomas de Plantas/ultraestructura , ARN Mensajero/genética , ARN Mensajero/metabolismo , Nicotiana/genética , Nicotiana/microbiología , Transcriptoma/genética
3.
Nat Commun ; 9(1): 151, 2018 01 11.
Artículo en Inglés | MEDLINE | ID: mdl-29323104

RESUMEN

Sphingolipids are essential components of cellular membranes and defects in their synthesis or degradation cause severe human diseases. The efficient degradation of sphingolipids in the lysosome requires lipid-binding saposin proteins and hydrolytic enzymes. The glycosphingolipid galactocerebroside is the primary lipid component of the myelin sheath and is degraded by the hydrolase ß-galactocerebrosidase (GALC). This enzyme requires the saposin SapA for lipid processing and defects in either of these proteins causes a severe neurodegenerative disorder, Krabbe disease. Here we present the structure of a glycosphingolipid-processing complex, revealing how SapA and GALC form a heterotetramer with an open channel connecting the enzyme active site to the SapA hydrophobic cavity. This structure defines how a soluble hydrolase can cleave the polar glycosyl headgroups of these essential lipids from their hydrophobic ceramide tails. Furthermore, the molecular details of this interaction provide an illustration for how specificity of saposin binding to hydrolases is encoded.


Asunto(s)
Galactosilceramidasa/metabolismo , Glicoesfingolípidos/metabolismo , Saposinas/metabolismo , Línea Celular , Ceramidas/metabolismo , Células HEK293 , Humanos , Interacciones Hidrofóbicas e Hidrofílicas , Unión Proteica/genética , Estructura Terciaria de Proteína , Saposinas/genética
4.
Microbiol Mol Biol Rev ; 79(3): 263-80, 2015 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-26041933

RESUMEN

The Oomycota include many economically significant microbial pathogens of crop species. Understanding the mechanisms by which oomycetes infect plants and identifying methods to provide durable resistance are major research goals. Over the last few years, many elicitors that trigger plant immunity have been identified, as well as host genes that mediate susceptibility to oomycete pathogens. The mechanisms behind these processes have subsequently been investigated and many new discoveries made, marking a period of exciting research in the oomycete pathology field. This review provides an introduction to our current knowledge of the pathogenic mechanisms used by oomycetes, including elicitors and effectors, plus an overview of the major principles of host resistance: the established R gene hypothesis and the more recently defined susceptibility (S) gene model. Future directions for development of oomycete-resistant plants are discussed, along with ways that recent discoveries in the field of oomycete-plant interactions are generating novel means of studying how pathogen and symbiont colonizations overlap.


Asunto(s)
Oomicetos/fisiología , Productos Agrícolas/genética , Productos Agrícolas/inmunología , Productos Agrícolas/microbiología , Resistencia a la Enfermedad/genética , Genes de Plantas , Interacciones Huésped-Patógeno , Inmunidad Innata , Filogenia , Enfermedades de las Plantas/microbiología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...