Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Cancers (Basel) ; 12(11)2020 Nov 23.
Artículo en Inglés | MEDLINE | ID: mdl-33238609

RESUMEN

Metabolic flexibility is the ability of a cell to adapt its metabolism to changes in its surrounding environment. Such adaptability, combined with apoptosis resistance provides cancer cells with a survival advantage. Mitochondrial voltage-dependent anion channel 1 (VDAC1) has been defined as a metabolic checkpoint at the crossroad of these two processes. Here, we show that the hypoxia-induced cleaved form of VDAC1 (VDAC1-ΔC) is implicated in both the up-regulation of glycolysis and the mitochondrial respiration. We demonstrate that VDAC1-ΔC, due to the loss of the putative phosphorylation site at serine 215, concomitantly with the loss of interaction with tubulin and microtubules, reprograms the cell to utilize more metabolites, favoring cell growth in hypoxic microenvironment. We further found that VDAC1-ΔC represses ciliogenesis and thus participates in ciliopathy, a group of genetic disorders involving dysfunctional primary cilium. Cancer, although not representing a ciliopathy, is tightly linked to cilia. Moreover, we highlight, for the first time, a direct relationship between the cilium and cancer cell metabolism. Our study provides the first new comprehensive molecular-level model centered on VDAC1-ΔC integrating metabolic flexibility, ciliogenesis, and enhanced survival in a hypoxic microenvironment.

2.
Cells ; 9(2)2020 02 03.
Artículo en Inglés | MEDLINE | ID: mdl-32028704

RESUMEN

miR-28-5p is downregulated in some tumor tissues in which it has been demonstrated to have tumor suppressor (TS) activity. Here, we demonstrate that miR-28-5p acts as a TS in prostate cancer (PCa) cells affecting cell proliferation/survival, as well as migration and invasion. Using the miRNA pull out assay and next generation sequencing, we collected the complete repertoire of miR-28-5p targets, obtaining a data set (miR-28-5p targetome) of 191 mRNAs. Filtering the targetome with TargetScan 7, PITA and RNA22, we found that 61% of the transcripts had miR-28-5p binding sites. To assign a functional value to the captured transcripts, we grouped the miR-28-5p targets into gene families with annotated function and showed that six transcripts belong to the transcription factor category. Among them we selected SREBF2, a gene with an important role in PCa. We validated miR-28-5p/SREBF2 interaction, demonstrating that SREBF2 inhibition affects almost all the tumor processes altered by miR-28-5p re-expression, suggesting that SREBF2 is an important mediator of miR-28-5p TS activity. Our findings support the identification of the targetome of cancer-related miRNAs as a tool to discover genes and pathways fundamental for tumor development, and potential new targets for anti-tumor therapy.


Asunto(s)
Genes Supresores de Tumor , MicroARNs/metabolismo , Neoplasias de la Próstata/genética , Proteína 2 de Unión a Elementos Reguladores de Esteroles/metabolismo , Línea Celular Tumoral , Regulación Neoplásica de la Expresión Génica , Humanos , Masculino , MicroARNs/genética , Proteína 2 de Unión a Elementos Reguladores de Esteroles/genética
3.
Cell Metab ; 29(2): 320-334.e5, 2019 02 05.
Artículo en Inglés | MEDLINE | ID: mdl-30393019

RESUMEN

Dipeptidyl peptidase-4 (DPP-4) controls glucose homeostasis through enzymatic termination of incretin action. We report that plasma DPP-4 activity correlates with body weight and fat mass, but not glucose control, in mice. Genetic disruption of adipocyte Dpp4 expression reduced plasma DPP-4 activity in older mice but did not perturb incretin levels or glucose homeostasis. Knockdown of hepatocyte Dpp4 completely abrogated the obesity-associated increase in plasma DPP-4 activity, reduced liver cytokine expression, and partially attenuated inflammation in adipose tissue without changes in incretin levels or glucose homeostasis. In contrast, circulating levels of soluble DPP4 (sDPP4) were dissociated from inflammation in mice with endothelial-selective or global genetic inactivation of Dpp4. Remarkably, inhibition of DPP-4 enzymatic activity upregulated circulating levels of sDPP4 originating from endothelial or hematopoietic cells without inducing systemic or localized inflammation. Collectively, these findings reveal unexpected complexity in regulation of soluble versus enzymatic DPP-4 and control of inflammation and glucose homeostasis.


Asunto(s)
Dipeptidil Peptidasa 4/fisiología , Glucosa/metabolismo , Hepatocitos/metabolismo , Incretinas/metabolismo , Inflamación/inmunología , Obesidad/metabolismo , Células 3T3-L1 , Animales , Citocinas/metabolismo , Hepatocitos/citología , Ratones , Ratones Endogámicos C57BL
4.
J Cancer ; 8(14): 2729-2739, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-28928862

RESUMEN

Purpose. miR-26a-5p is a tumor suppressor (TS) miRNA often downregulated in several tumor tissues and tumor cell lines. In this work, we performed the re-expression of the miR-26a-5p in DU-145 prostate cancer cells to collect genes interacting with miR-26a-5p and analyzed their integration in the tumorigenesis related pathways. Methods. The transfection of DU-145 prostate cancer cells with miR-26a-5p was done using nucleofection. The biological effects induced by miR-26a-5p re-expression were detected with routine assays for cell proliferation, cell cycle, survival, apoptosis and cell migration. The miRNA pull out technique was used to collect and next generation sequencing to identify the complete repertoire of the miR-26a-5p targets (miR-26a-5p/targetome). TargetScan 7, PITA and RNA22 were used to find the predicted miR-26a-5p targets in the miR-26a-5p/targetome. Gene set enrichment analysis were used to integrate target genes in KEGG pathways and Protein-Protein Interaction networks (PPINs) and modules were built. Results. miR-26a-5p exerted an anti-proliferative effect acting at several levels, by decreasing survival and migration and inducing both cell cycle block and apoptosis. The analysis of the miR-26a-5p/targetome showed that 1423 (1352 coding and 71 non-coding) transcripts interacted with miR-26a-5p. Filtering the miR-26a-5p/targetome with prediction algorithms, 628 out of 1353 transcripts were miR-26a-5p predicted targets and 73 of them were already validated miR-26a-5p targets. Finally, miR-26a-5p targets were involved in 22 KEGG pathways and 20 significant protein-protein interaction modules Conclusion. The TS-miR-26a-5p/targetome is a platform that shows both unknown and known miRNA/target interactions thus offering the possibility to validate genes and discover pathways in which these genes could be involved.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...