Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 40
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Plants (Basel) ; 13(3)2024 Jan 25.
Artículo en Inglés | MEDLINE | ID: mdl-38337895

RESUMEN

Thymol, a plant-derived monoterpene phenol known for its broad biological activity, has often been incorporated into chitosan-based biomaterials to enhance therapeutic efficacy. Using the Preferred Reporting Items for Systematic Reviews and Meta-Analysis (PRISMA) guidelines, we conducted a systematic literature review from 2018 to 2023, focusing on the biomedical implications of thymol-loaded chitosan systems. A review of databases, including PubMed, Scopus, and Web of Science was conducted using specific keywords and search criteria. Of the 90 articles, 12 were selected for the review. Thymol-loaded chitosan-based nanogels (TLCBS) showed improved antimicrobial properties, especially against multidrug-resistant bacterial antagonists. Innovations such as bipolymer nanocarriers and thymol impregnated with photosensitive chitosan micelles offer advanced bactericidal strategies and show potential for bone tissue regeneration and wound healing. The incorporation of thymol also improved drug delivery efficiency and biomechanical strength, especially when combined with poly(dimethylsiloxane) in chitosan-gelatin films. Thymol-chitosan combinations have also shown promising applications in oral delivery and periodontal treatment. This review highlights the synergy between thymol and chitosan in these products, which greatly enhances their therapeutic efficacy and highlights the novel use of essential oil components. It also highlights the novelty of the studies conducted, as well as their limitations and possible directions for the development of integrated substances of plant and animal origin in modern and advanced medical applications.

2.
Molecules ; 28(23)2023 Nov 24.
Artículo en Inglés | MEDLINE | ID: mdl-38067472

RESUMEN

Methylglyoxal (MGO) is the major compound belonging to reactive carbonyl species (RCS) responsible for the generation of advanced glycation end products (AGEs). Its upregulation, followed by deleterious effects at the cellular and systemic levels, is associated with metabolic disturbances (hyperglycemia/hyperinsulinemia/insulin resistance/hyperlipidemia/inflammatory processes/carbonyl stress/oxidative stress/hypoxia). Therefore, it is implicated in a variety of disorders, including metabolic syndrome, diabetes mellitus, and cardiovascular diseases. In this review, an interplay between pathways leading to MGO generation and scavenging is addressed in regard to this system's impairment in pathology. The issues associated with mechanistic MGO involvement in pathological processes, as well as the discussion on its possible causative role in cardiometabolic diseases, are enclosed. Finally, the main strategies aimed at MGO and its AGEs downregulation with respect to cardiometabolic disorders treatment are addressed. Potential glycation inhibitors and MGO scavengers are discussed, as well as the mechanisms of their action.


Asunto(s)
Enfermedades Cardiovasculares , Diabetes Mellitus , Hiperglucemia , Humanos , Piruvaldehído/farmacología , Productos Finales de Glicación Avanzada/metabolismo , Óxido de Magnesio , Enfermedades Cardiovasculares/tratamiento farmacológico , Enfermedades Cardiovasculares/metabolismo
3.
Biomedicines ; 11(11)2023 Nov 03.
Artículo en Inglés | MEDLINE | ID: mdl-38001968

RESUMEN

BACKGROUND: The abnormal serum concentration of methylglyoxal (MGO) has been presented as an indicator of chronic complications in diabetes (DM). Because such complications are also found in pre-DM, we decided to assess the concentration of this compound in individuals with pre-DM, without cardio-vascular diseases. METHODS: Frozen samples from individuals newly diagnosed with pre-DM (N = 31) and healthy subjects (N = 11) were prepared and MGO concentration was determined using UHPLC-ESI-QqTOF-MS. RESULTS: Statistical significance was established when the groups were compared for body weight, BMI, fasting glucose level, fatty liver and use of statins but not for the other descriptive parameters. The positive linear correlation showed that the higher HbA1c, the higher MGO concentration (p = 0.01). The values of MGO were within the normal range in both groups (mean value for pre-DM: 135.44 nM (±SD = 32.67) and for the control group: 143.25 nM (±SD = 17.93); p = 0.46 (±95% CI)), with no statistical significance between the groups. CONCLUSIONS: We did not confirm the elevated MGO levels in the group of patients with pre-DM. The available data suggests a possible effect of statin intake on MGO levels. This thesis requires confirmation on a larger number of patients with an assessment of MGO levels before and after the introduction of statins.

4.
Int J Mol Sci ; 24(17)2023 Aug 24.
Artículo en Inglés | MEDLINE | ID: mdl-37685975

RESUMEN

Reactive α-dicarbonyls (α-DCs), such as methylglyoxal (MGO), glyoxal (GO), and 3-deoxyglucosone (3-DG), are potent precursors in the formation of advanced glycation end products (AGEs). In particular, MGO and MGO-derived AGEs are thought to be involved in the development of vascular complications in diabetes. Experimental studies showed that citrus and pomegranate polyphenols can scavenge α-DCs. Therefore, the aim of this study was to evaluate the effect of a citrus and pomegranate complex (CPC) on the α-DCs plasma levels in a double-blind, placebo-controlled cross-over trial, where thirty-six elderly subjects were enrolled. They received either 500 mg of Citrus sinensis peel extract and 200 mg of Punica granatum concentrate in CPC capsules or placebo capsules for 4 weeks, with a 4-week washout period in between. For the determination of α-DCs concentrations, liquid chromatography tandem mass spectrometry was used. Following four weeks of CPC supplementation, plasma levels of MGO decreased by 9.8% (-18.7 nmol/L; 95% CI: -36.7, -0.7 nmol/L; p = 0.042). Our findings suggest that CPC supplementation may represent a promising strategy for mitigating the conditions associated with MGO involvement. This study was registered on clinicaltrials.gov as NCT03781999.


Asunto(s)
Citrus , Granada (Fruta) , Anciano , Humanos , Cápsulas , Productos Finales de Glicación Avanzada , Óxido de Magnesio , Piruvaldehído
5.
Molecules ; 28(6)2023 Mar 22.
Artículo en Inglés | MEDLINE | ID: mdl-36985839

RESUMEN

The most significant reactive α-dicarbonyl RCS involved in the pathomechanism of glycation and related diseases is methylglyoxal (MGO). Hyperglycemia promotes the generation of MGO and leads to the formation of advanced glycation end products (AGEs). Therefore, MGO trapping and glycation inhibition appear to be important therapeutic targets in prediabetes, diabetes, and in the early prevention of hyperglycemic complications. Peppermint leaf is commonly used as herbal tea, rich in polyphenols. Eriocitrin, its predominant component, in a double-blind, randomized controlled study reversed the prediabetic condition in patients. However, the antiglycation activity of this plant material and its polyphenols has not been characterized to date. Therefore, the aim of this study was to evaluate the ability of a peppermint leaf dry extract and its polyphenols to inhibit non-enzymatic protein glycation in a model with bovine serum albumin (BSA) and MGO as a glycation agent. Peppermint polyphenols were also evaluated for their potential to trap MGO in vitro, and the resulting adducts were analyzed by UHPLC-ESI-MS. To relate chemical composition to glycation inhibitory activity, the obtained peppermint extract was subjected to qualitative and quantitative analysis. The capability of peppermint leaf polyphenols to inhibit glycation (27.3-77.2%) and form adducts with MGO was confirmed. In the case of flavone aglycones, mono- and di-adducts with MGO were observed, while eriodictyol and eriocitrin effectively produced only mono-adducts. Rosmarinic acid and luteolin-7-O-glycosides did not reveal this action. IC50 of the peppermint leaf dry extract was calculated at 2 mg/mL, equivalent to a concentration of 1.8 µM/mL of polyphenols, including ~1.4 µM/mL of flavonoids and ~0.4 µM/mL of phenolic acids. The contribution of the four major components to the anti-AGE activity of the extract was estimated at 86%, including eriocitrin 35.4%, rosmarinic acid 25.6%, luteolin-7-O-rutinoside 16.9%, luteolin-7-O-ß-glucuronoside 8.1%, and others 14%. The effect of peppermint dry extract and polyphenols in inhibiting MGO-induced glycation in vitro was comparable to that of metformin used as a positive control.


Asunto(s)
Polifenoles , Piruvaldehído , Humanos , Polifenoles/química , Piruvaldehído/química , Mentha piperita/química , Luteolina/análisis , Óxido de Magnesio , Extractos Vegetales/química , Hojas de la Planta/química , Productos Finales de Glicación Avanzada/química , Ácido Rosmarínico
6.
Antioxidants (Basel) ; 12(3)2023 Feb 22.
Artículo en Inglés | MEDLINE | ID: mdl-36978801

RESUMEN

The European Food Safety Authority recommends C. incanus as a natural source of antioxidants. Its activity is essentially determined by polyphenols, although specific compounds are not finally indicated. The available plant material comes from different subspecies and locations, which can lead to differences in chemical composition and potency. For this reason, we conducted a detailed analysis of the polyphenol content and antioxidant activity of 52 different C. incanus teas from Turkey, Albania, Greece, and unspecified regions. We focused special attention on ellagitannins, which have not been properly determined so far. Besides oxidative stress, hyperglycemia is an essential component of cardiometabolic diseases. Therefore, in subsequent experiments, we evaluated the ability of C. incanus extracts and individual polyphenols to inhibit α-glucosidase. Using statistical methods, we analyzed how differences in chemical composition affect activity. The results showed that C. incanus is a rich source of ellagitannins (2.5-19%), which dominate among polyphenols (5.5-23%). Turkish-origin products had higher ellagitannin content and a greater antioxidant effect (FRAP, ABTS) than Albanian and Greek products. In contrast, the flavonoid and phenolic acid contents and DPPH values were at similar levels in all products. An in-depth analysis of their composition indicated that all groups of polyphenols are involved in the antioxidant effect, but a significant contribution can be attributed to ellagitannins and flavonoids. C. incanus extracts showed a high capacity to inhibit α-glucosidase activity (IC50 125-145 µg/mL). Ellagitannins were the most effective inhibitors (IC50 0.7-1.1 µM), with a potency exceeding acarbose (3.3 mM). In conclusion, C. incanus, due to the presence of ellagitannins and flavonoids, exhibits powerful antioxidant and α-glucosidase inhibitory effects.

7.
Int J Mol Sci ; 23(23)2022 Nov 25.
Artículo en Inglés | MEDLINE | ID: mdl-36499065

RESUMEN

The excessive dietary intake of simple sugars and abnormal metabolism in certain diseases contribute to the increased production of α-dicarbonyls (α-DCs), such as methylglyoxal (MGO) and glyoxal (GO), the main precursors of the formation of advanced glycation end products (AGEs). AGEs play a vital role, for example, in the development of cardiovascular diseases and diabetes. Aspalathus linearis (Burman f.) R. Dahlgren (known as rooibos tea) exhibits a wide range of activities beneficial for cardio-metabolic health. Thus, the present study aims to investigate unfermented and fermented rooibos extracts and their constituents for the ability to trap MGO and GO. The individual compounds identified in extracts were tested for the capability to inhibit AGEs (with MGO or GO as a glycation agent). Ultra-high-performance liquid chromatography coupled with an electrospray ionization mass spectrometer (UHPLC-ESI-MS) was used to investigate α-DCs' trapping capacities. To evaluate the antiglycation activity, fluorescence measurement was used. The extract from the unfermented rooibos showed a higher ability to capture MGO/GO and inhibit AGE formation than did the extract from fermented rooibos, and this effect was attributed to a higher content of dihydrochalcones. The compounds detected in the extracts, such as aspalathin, nothofagin, vitexin, isovitexin, and eriodictyol, as well as structurally related phloretin and phloroglucinol (formed by the biotransformation of certain flavonoids), trapped MGO, and some also trapped GO. AGE formation was inhibited the most by isovitexin. However, it was the high content of aspalathin and its higher efficiency than that of metformin that determined the antiglycation and trapping properties of green rooibos. Therefore, A. linearis, in addition to other health benefits, could potentially be used as an α-DC trapping agent and AGE inhibitor.


Asunto(s)
Aspalathus , Aspalathus/química , Flavonoides/química , Extractos Vegetales/farmacología , Extractos Vegetales/química , Productos Finales de Glicación Avanzada
8.
Molecules ; 27(19)2022 Oct 04.
Artículo en Inglés | MEDLINE | ID: mdl-36235112

RESUMEN

Various mint taxa are widely cultivated and are used not only for medicinal purposes but also in cosmetic and industrial applications. The development of new varieties or cultivars of mint generates difficulties in their correct identification and safe use. Volatile organic compounds (VOCs) from the leaves of seven different taxa of the genus Mentha obtained by hydrodistillation (HD) and headspace solid-phase microextraction (HS-SPME) were analyzed using gas chromatography-mass spectrometry (GC-MS). Principal component analysis (PCA) was also performed. Comparative GC-MS analysis of the obtained extracts showed similarity in the major compounds. PCA data allowed the separation of two groups of chemotypes among the analyzed mints, characterized by the abundance of piperitenone oxide and carvone. Two out of seven analyzed taxa were not previously examined for VOC profile, one was examined only for patent application purposes, and six out of seven were investigated for the first time using the HS-SPME technique. The presented analysis provides new data on the abundance and qualitative characterization of VOCs in the studied mint plants and on the safety of their use, related to the possibility of the presence of potentially toxic components. HS-SPME is a valuable method to extend the characterization of the VOC profile obtained by hydrodistillation.


Asunto(s)
Mentha , Compuestos Orgánicos Volátiles , Cromatografía de Gases y Espectrometría de Masas/métodos , Óxidos , Microextracción en Fase Sólida/métodos , Compuestos Orgánicos Volátiles/análisis
9.
Molecules ; 27(16)2022 Aug 19.
Artículo en Inglés | MEDLINE | ID: mdl-36014531

RESUMEN

Strawberry leaves are considered a valuable waste material; so far, mainly due to their antioxidant properties. Since the annual production of this crop is high, our study aimed to thoroughly examine the chemical composition and antidiabetes-related bioactivity of Fragaria × ananassa leaf of its popular and productive cultivar Senga Sengana. Leaves from three different seasons, collected after fruiting, were extensively analyzed (UHPLC-qTOF-MS/MS, HPLC-DAD). Some individual components were isolated and quantified, including specific flavonol diglycosides (e.g., 3-O-[ß-xylosyl(1‴→2″)]-ß-glucuronosides). The separated quercetin glycosides were tested in an antiglycation assay, and their methylglyoxal uptake capacity was measured. In addition, the biodegradable polyester precursor 2-pyrone-4,6-dicarboxylic acid (PDC) was confirmed at relatively high levels, providing further opportunity for strawberry leaf utilization. We want to bring to the attention of the food, pharmaceutical, and cosmetic industries the Senga Sengana strawberry leaf as a new botanical raw material. It is rich in PDC, ellagitannins, and flavonols-potent glycation inhibitors.


Asunto(s)
Fragaria , Flavonoles/análisis , Fragaria/química , Frutas/química , Taninos Hidrolizables/análisis , Hojas de la Planta/química , Pironas , Espectrometría de Masas en Tándem
10.
Front Pharmacol ; 13: 867709, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35784715

RESUMEN

Lamiaceae species are rich sources of biologically active compounds which have been applied in medicine since ancient times. Especially their antineoplastic properties have been thoroughly studied with respect to their putative application in chemoprevention and adjuvant therapy of cancer. However, the most known biological effects of Lamiaceae have been ascribed to their essential oil fractions, whereas their (poly)phenolic metabolites being also abundant in these plants, are much less recognized, nevertheless contributing to their beneficial properties, such as anti-cancer actions. The aim of this study was to evaluate the impact of dried aqueous extracts from common thyme (Thymus vulgaris L.) (ExTv), wild thyme (Thymus serpyllum L.) (ExTs), sweet marjoram (Origanum majorana L.) (ExOm), and peppermint (Mentha × piperita L.) (ExMp), as well as (poly)phenolic compounds: caffeic acid (CA), rosmarinic acid (RA), lithospermic acid (LA), luteolin-7-O-ß-glucuronide (Lgr), luteolin-7-O-rutinoside (Lr), eriodictyol-7-O-rutinoside (Er), and arbutin (Ab), on unstimulated Jurkat cells, in comparison with their effect on staurosporine-stimulated Jurkat cells. Jurkat T cells were incubated with different concentrations of ExTv, ExTs, ExOm, ExMp, Lgr, LA, Er, Lr, RA, CA, or Ab. Subsequently, staurosporine was added to half of the samples and flow cytometry combined with fluorescence-activated cell sorting analysis was conducted, which allowed for the selection of early and late apoptotic cells. Both ExTs and ExOm stimulated apoptosis of Jurkat cells and enhanced the proapoptotic effect of staurosporine. Conversely, ExTv and ExMp demonstrated no clear effect on apoptosis. CA and RA raised the staurosporine-induced apoptotic effect. The impact of Er and Lgr on Jurkat cells showed fluctuations depending on the compound concentration. Neither Er nor Ab altered staurosporine-induced apoptosis in Jurkat cells, whereas Lgr seemed to weaken the proapoptotic action of staurosporine. The most evident observation in this study was the pro-apoptotic action of ExTs and ExOm observed both in staurosporine-unstimulated and stimulated Jurkat cells. Additionally, an enhancement of staurosporine-induced apoptosis by caffeic and rosmarinic acids was reported. Therefore, it might be concluded that these are the mixtures of biologically active polyphenols which often exert more pronounced beneficial effects than purified molecules.

11.
Molecules ; 27(8)2022 Apr 09.
Artículo en Inglés | MEDLINE | ID: mdl-35458630

RESUMEN

Reactive oxygen and carbonyl species promote oxidative and carbonyl stress, and the development of diabetes, metabolic syndrome, cardiovascular diseases, and others. The traditional herb Cistus × incanus is known for its antioxidant properties; therefore, the current study aimed to assess how the chemical composition of a C. incanus water infusion corresponds with its antioxidative and antiglycative effects in vitro. The composition of infusions prepared from commercial products was analyzed with UHPLC-ESI-qTOF-MS. Total phenolics, flavonoids, and non-flavonoid polyphenols were determined. Antioxidant activity of infusions and selected polyphenols was investigated using DPPH, ABTS, and FRAP. Fluorometric measurements and methylglyoxal capture were performed to investigate the antiglycation activity. PCA and PLS-DA models were applied to explore the correlation between chemical and antioxidant results. The principal flavonoids in C. incanus were flavonols. In vitro tests revealed that a stronger antioxidant effect was demonstrated by plant material from Turkey rich in flavonoids, followed by Albania and Greece. Flavonols and ellagic acid displayed stronger antiradical and reducing power than EA-derived urolithins. Hyperoside was the most potent inhibitor of glycation. The results indicate that flavonoids are primarily responsible for rock rose antioxidant and antiglycation properties. PLS-DA modeling can be used to identify the origin of plant material with sensitivity and specificity exceeding 86%.


Asunto(s)
Cistus , Antioxidantes/química , Antioxidantes/farmacología , Cistus/química , Flavonoides/química , Flavonoides/farmacología , Flavonoles , Fenoles/química , Fenoles/farmacología , Extractos Vegetales/química , Extractos Vegetales/farmacología , Polifenoles/química , Polifenoles/farmacología , Agua
12.
Molecules ; 28(1)2022 Dec 25.
Artículo en Inglés | MEDLINE | ID: mdl-36615355

RESUMEN

Cistus is a plant that has been used in natural medicine for hundreds of years; it works primarily as an antioxidant and cleansing agent. Cistus × incanus leaves or herb can be an attractive source of polyphenols and flavonoids. The official protocols of active compound analysis relies on the extraction of compounds of interest from plant matter, which makes their determination long and costly. An analysis of plant material in its native state can be performed using vibrational spectroscopy. This paper presents a comparison of Raman spectroscopy, attenuated total reflection in mid-infrared and diffuse reflectance technique in the near-infrared region for the simultaneous quantification of total polyphenols (TPC) and flavonoids (TF) content, as well as the determination of FRAP antioxidant activity of C. incanus material. Utilizing vibrational spectra and using partial least squares algorithm, TPC and TF were quantified with the RSEPVAL errors in the 2.7-5.4% range, while FRAP antioxidant activity for validation sets was determined with relative errors ranged from 5.2 to 9.3%. For the analyzed parameters, the lowest errors of predictions were computed for models constructed using Raman data. The developed models allow for fast and precise quantification of the studied active compounds in C. incanus material without any chemical sample treatment.


Asunto(s)
Cistus , Polifenoles , Polifenoles/química , Flavonoides/química , Cistus/química , Antioxidantes/química , Análisis de los Mínimos Cuadrados
13.
Pharmaceuticals (Basel) ; 14(11)2021 Nov 10.
Artículo en Inglés | MEDLINE | ID: mdl-34832921

RESUMEN

Peppermint leaf, sage leaf, thyme herb, and their preparations are common components of herbal medicinal products (HMPs). According to the European Pharmacopoeia guidelines, the above-mentioned plant substances are standardized for the content of essential oils, omitting polyphenols, which also have a significant impact on their activities. The aim of this study was to evaluate the stability of the predominant polyphenols-rosmarinic acid, luteolin-7-O-ß-glucuronide, and eriocitrin-in selected commercial liquid HMPs containing thyme, sage, and peppermint under long-term, intermediate, and accelerated testing conditions. Qualitative and quantitative analyses of these polyphenols were performed by the previously optimized and validated HPLC-DAD method. Rosmarinic acid stability was better in hydroethanolic than in an aqueous solution. The effect of the solvent on the stability of luteolin-7-O-ß-glucuronide and eriocitrin could not be determined and requires further investigation. The present study is the first to analyze the stability of these compounds in commercial herbal medicinal products. The expiration dates proposed by the manufacturers of the tested HMPs did not guarantee stable levels of all analyzed polyphenols throughout the stated period. However, this study is preliminary and requires continuation on a larger number of medicinal products.

14.
Int J Mol Sci ; 22(18)2021 Sep 16.
Artículo en Inglés | MEDLINE | ID: mdl-34576189

RESUMEN

Reactive carbonyl species (RCS) such as methylglyoxal (MGO) or glyoxal (GO) are the main precursors of the formation of advanced glycation end products (AGEs). AGEs are a major factor in the development of vascular complications in diabetes. Vasoprotectives (VPs) exhibit a wide range of activities beneficial to cardiovascular health. The present study aimed to investigate selected VPs and their structural analogs for their ability to trap MGO/GO, inhibit AGE formation, and evaluate their antioxidant potential. Ultra-high-performance liquid chromatography coupled with an electrospray ionization mass spectrometer (UHPLC-ESI-MS) and diode-array detector (UHPLC-DAD) was used to investigate direct trapping capacity and kinetics of quenching MGO/GO, respectively. Fluorimetric and colorimetric measurements were used to evaluate antiglycation and antioxidant action. All tested substances showed antiglycative effects, but hesperetin was the most effective in RCS scavenging. We demonstrated that rutin, diosmetin, hesperidin, and hesperetin could trap both MGO and GO by forming adducts, whose structures we proposed. MGO-derived AGE formation was inhibited the most by hesperetin, and GO-derived AGEs by diosmetin. High reducing and antiradical activity was confirmed for quercetin, rutin, hesperetin, and calcium dobesilate. Therefore, in addition to other therapeutic applications, some VPs could be potential candidates as antiglycative agents to prevent AGE-related complications of diabetes.


Asunto(s)
Productos Finales de Glicación Avanzada/metabolismo , Animales , Antioxidantes/metabolismo , Cromatografía Líquida de Alta Presión , Hesperidina/farmacología , Humanos , Concentración de Iones de Hidrógeno , Piruvaldehído/farmacología , Espectrometría de Masa por Ionización de Electrospray
15.
Nutrients ; 13(8)2021 Aug 09.
Artículo en Inglés | MEDLINE | ID: mdl-34444893

RESUMEN

The extract of pomegranate (Punica granatum) has been applied in medicine since ancient times due to its broad-spectrum health-beneficial properties. It is a rich source of hydrolyzable tannins and anthocyanins, exhibiting strong antioxidative, anti-inflammatory, and antineoplastic properties. Anticancer activities of pomegranate with reference to modulated signaling pathways in various cancer diseases have been recently reviewed. However, less is known about punicalagin (Pug), a prevailing compound in pomegranate, seemingly responsible for its most beneficial properties. In this review, the newest data derived from recent scientific reports addressing Pug impact on neoplastic cells are summarized and discussed. Its attenuating effect on signaling circuits promoting cancer growth and invasion is depicted. The Pug-induced redirection of signal-transduction pathways from survival and proliferation into cell-cycle arrest, apoptosis, senescence, and autophagy (thus compromising neoplastic progression) is delineated. Considerations presented in this review are based mainly on data obtained from in vitro cell line models and concern the influence of Pug on human cervical, ovarian, breast, lung, thyroid, colorectal, central nervous system, bone, as well as other cancer types.


Asunto(s)
Antineoplásicos/farmacología , Taninos Hidrolizables/farmacología , Neoplasias/prevención & control , Extractos Vegetales/farmacología , Granada (Fruta)/química , Transducción de Señal/efectos de los fármacos , Fenómenos Fisiológicos Celulares/efectos de los fármacos , Humanos
16.
Neurosci Lett ; 747: 135680, 2021 03 16.
Artículo en Inglés | MEDLINE | ID: mdl-33529651

RESUMEN

Rooibos tea, brewed using Aspalathus linearis leaves, is a popular South African herbal infusion, but its everyday intake is not fully described in terms of the neuropsychopharmacological outcomes. The cell-protective activity of A. linearis is connected with the ability of reducing glycaemia, inflammation as well as oxidative stress. It was already shown that "fermented" rooibos herbal tea (FRHT), which is rich in phenolic compounds, improves the cognitive performance of rats in the water maze and impacts dopaminergic striatal transmission. The present research was taken to extend the knowledge about the feasible behavioural and neurochemical implications of sustained oral FRHT consumption. We hypothesized that it might affect brain amino acid content and thus induce behaviour and neuroprotection. FRHTs of different leaf to water ratios (1:100, 2:100 and 4:100), analysed by chromatographic methods as regards their flavonoid characteristics, were given to rats as only liquid for 3 months. Their behaviour was evaluated in the hole-board test (HBT). Brain amino acids concentration was analysed in the striatum, hippocampus and prefrontal cortex by HPLC-ECD. The rats drinking rooibos tea presented increased motor activity defined as time spent on moving in the HBT. Their exploration measured by head-dipping and rearing was enhanced. Longer time of the testing-box central zone occupation indicated to reduction in anxiety-related behaviour. Excitatory amino acids (aspartate and glutamate) content was decreased in the striatum of animals drinking the infusions whereas taurine level was increased both in the striatum and hippocampus. In conclusion we suggest that long-term FRHT intake affects exploration and anxiety-related behaviour of the rats as well as exerts biochemical outcomes in the brain that support the neuroprotective impact of rooibos tea.


Asunto(s)
Aminoácidos/metabolismo , Aspalathus/metabolismo , Encéfalo/metabolismo , Extractos Vegetales/farmacología , Animales , Encéfalo/efectos de los fármacos , Dopamina/metabolismo , Fermentación/efectos de los fármacos , Flavonoides/farmacología , Masculino , Estrés Oxidativo/efectos de los fármacos , Fenoles/farmacología , Ratas Sprague-Dawley
17.
Molecules ; 25(24)2020 Dec 09.
Artículo en Inglés | MEDLINE | ID: mdl-33317096

RESUMEN

Galega officinalis L. has been known for centuries as an herbal medicine used to alleviate the symptoms of diabetes, but its comprehensive chemical composition and pharmacological activity are still insufficiently known. The current study involved the qualitative and quantitative phytochemical analysis and in vitro evaluation of the antioxidative and methylglyoxal (MGO) trapping properties of galega herb. Ultra high-performance liquid chromatography coupled with both the electrospray ionization mass spectrometer and diode-array detector (UHPLC-ESI-MS and UHPLC-DAD) were used to investigate the composition and evaluate the anti-MGO capability of extracts and their components. Hot water and aqueous methanol extracts, as well as individual compounds representing phytochemical groups, were also assessed for antioxidant activity using DPPH (2,2-diphenyl-1-(2,4,6-trinitrophenyl)hydrazyl) and ABTS (2,2'-azino-bis(3-ethylbenz-thiazoline-6-sulfonic acid) assays. Quercetin and metformin were used as a positive control. We confirmed the presence of tricyclic quinazoline alkaloids, guanidines, flavonoids, and hydroxycinnamic acids (HCAs) in galega extracts. The polyphenolic fraction was dominated by mono-, di-, and triglycosylated flavonols, as well as monocaffeoylhexaric acids. The in vitro tests indicated which G. officinalis components exhibit beneficial antioxidative and MGO trapping effects. For galega extracts, flavonols, and HCAs, a potent antiradical activity was observed. The ability to trap MGO was noted for guanidines and flavonoids, whereas HCA esters and quinazoline alkaloids were ineffective. The formation of mono-MGO adducts of galegine, hydroxygalegine, and rutin in the examined water infusion was observed.


Asunto(s)
Antioxidantes/química , Galega/química , Fitoquímicos/química , Alcaloides/química , Antioxidantes/farmacología , Cromatografía Líquida de Alta Presión , Flavonoides/química , Guanidinas/química , Hidroxibenzoatos/química , Técnicas In Vitro , Medicina Tradicional , Estructura Molecular , Fitoquímicos/farmacología , Extractos Vegetales/química , Extractos Vegetales/farmacología , Preparaciones de Plantas/química , Preparaciones de Plantas/farmacología , Plantas Medicinales/química , Polifenoles/química , Piruvaldehído/análogos & derivados , Piruvaldehído/química , Quinazolinas/química , Espectrometría de Masa por Ionización de Electrospray
18.
Molecules ; 25(20)2020 Oct 12.
Artículo en Inglés | MEDLINE | ID: mdl-33053845

RESUMEN

The stone of Cornus mas L. remains the least known morphological part of this plant, whereas the fruit is appreciated for both consumption purposes and biological activity. The stone is considered to be a byproduct of fruit processing and very little is known about its phytochemical composition and biological properties. In this study, the complete qualitative determination of hydrolyzable tannins, their quantitative analysis, total polyphenolic content, and antioxidant properties of the stone of C. mas are presented for the first time. The 37 identified compounds included the following: various gallotannins (11), monomeric ellagitannins (7), dimeric ellagitannins (10), and trimeric ellagitannins (7). The presence of free gallic acid and ellagic acid was also reported. Our results demonstrate that C. mas stone is a source of various bioactive hydrolyzable tannins and shows high antioxidant activity which could allow potential utilization of this raw material for recovery of valuable pharmaceutical or nutraceutical substances. The principal novelty of our findings is that hydrolyzable tannins, unlike other polyphenols, have been earlier omitted in the evaluation of the biological activities of C. mas. Additionally, the potential recovery of these bioactive chemicals from the byproduct is in line with the ideas of green chemistry and sustainable production.


Asunto(s)
Antioxidantes/química , Taninos Hidrolizables/química , Espectrometría de Masas en Tándem
19.
Molecules ; 25(18)2020 Sep 09.
Artículo en Inglés | MEDLINE | ID: mdl-32917001

RESUMEN

Thymol (2-isopropyl-5-methylphenol) belongs to the phenolic monoterpenes and mostly occurs in thyme species. It is one of the main compounds of thyme essential oil. Both thymol and thyme essential oil have long been used in traditional medicine as expectorant, anti-inflammatory, antiviral, antibacterial, and antiseptic agents, mainly in the treatment of the upper respiratory system. The current search for new directions of biological or therapeutic activities of natural plant substances with known structures includes thyme essential oil and thymol. Novel studies have demonstrated their antibiofilm, antifungal, antileishmanial, antiviral, and anticancer properties. Also, their new therapeutic formulations, such as nanocapsules containing these constituents, can be beneficial in medicinal practice and create opportunities for their extensive use. Extensive application of thymol and thyme essential oil in the healthcare sector is very promising but requires further research and analysis.


Asunto(s)
Aceites Volátiles/química , Timol/química , Thymus (Planta)/química , Animales , Antibacterianos/farmacología , Antifúngicos/farmacología , Antiparasitarios/farmacología , Antivirales/farmacología , Apoptosis , Biopelículas/efectos de los fármacos , Proliferación Celular , Cryptococcus/efectos de los fármacos , Humanos , Pruebas de Sensibilidad Microbiana , Monoterpenos/química , Fenoles/química , Extractos Vegetales/farmacología , Aceites de Plantas/química , Polímeros/química
20.
Molecules ; 25(9)2020 Apr 25.
Artículo en Inglés | MEDLINE | ID: mdl-32344904

RESUMEN

The purpose of this study was to investigate the composition of leaf extracts from Aronia melanocarpa, Chaenomeles superba, and Cornus mas, and their antimicrobial activity against typical spoilage-causing and pathogenic bacteria found in meat and meat products. The highest total phenolic content (TPC) was detected in C. superba extract, followed by C. mas and A. melanocarpa extracts. The antioxidant capacity of the extracts was measured by DPPH and ABTS assays. The lowest IC50 values were found for C. superba extract, followed by C. mas and A. melanocarpa extracts. LC-MS and HPLC analysis revealed that A. melanocarpa and C. superba extracts contained hydroxycinnamic acid derivatives and flavonoids (mainly flavonols). Hydroxycinnamic acid derivatives were detected in the C. mas extract, as well as flavonols, ellagitannins, and iridoids. The antibacterial activity of the plant extracts was tested against Gram-negative bacteria (Moraxella osloensis, Pseudomonas fragi, Acinetobacter baumanii, Escherichia coli, Enterobacter aerogenes, Salmonella enterica) and Gram-positive bacteria (Enterococcus faecium, Staphylococcus aureus, Brochothrix thermosphacta, Lactobacillus sakei, Listeria monocytogenes) using the microculture method. The extracts acted as bacteriostatic agents, decreasing the growth rate (µmax) and extending the lag phase (tlag). C. mas showed most potent antibacterial activity, as confirmed by principal component analysis (PCA).


Asunto(s)
Antibacterianos/farmacología , Antioxidantes/farmacología , Photinia/química , Fitoquímicos/farmacología , Extractos Vegetales/farmacología , Hojas de la Planta/química , Antibacterianos/química , Antioxidantes/química , Relación Dosis-Respuesta a Droga , Pruebas de Sensibilidad Microbiana , Fitoquímicos/química , Extractos Vegetales/química , Polifenoles
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...