Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
2.
Cell ; 186(15): 3182-3195.e14, 2023 07 20.
Artículo en Inglés | MEDLINE | ID: mdl-37379837

RESUMEN

The elucidation of protein function and its exploitation in bioengineering have greatly advanced the life sciences. Protein mining efforts generally rely on amino acid sequences rather than protein structures. We describe here the use of AlphaFold2 to predict and subsequently cluster an entire protein family based on predicted structure similarities. We selected deaminase proteins to analyze and identified many previously unknown properties. We were surprised to find that most proteins in the DddA-like clade were not double-stranded DNA deaminases. We engineered the smallest single-strand-specific cytidine deaminase, enabling efficient cytosine base editor (CBE) to be packaged into a single adeno-associated virus (AAV). Importantly, we profiled a deaminase from this clade that edits robustly in soybean plants, which previously was inaccessible to CBEs. These discovered deaminases, based on AI-assisted structural predictions, greatly expand the utility of base editors for therapeutic and agricultural applications.


Asunto(s)
Edición Génica , Proteínas , Proteínas/metabolismo , Citidina Desaminasa/genética , Citidina Desaminasa/metabolismo , ADN , Sistemas CRISPR-Cas , Citosina/metabolismo
3.
Mol Cell ; 79(5): 728-740.e6, 2020 09 03.
Artículo en Inglés | MEDLINE | ID: mdl-32721385

RESUMEN

Cytosine base editors (CBEs) generate C-to-T nucleotide substitutions in genomic target sites without inducing double-strand breaks. However, CBEs such as BE3 can cause genome-wide off-target changes via sgRNA-independent DNA deamination. By leveraging the orthogonal R-loops generated by SaCas9 nickase to mimic actively transcribed genomic loci that are more susceptible to cytidine deaminase, we set up a high-throughput assay for assessing sgRNA-independent off-target effects of CBEs in rice protoplasts. The reliability of this assay was confirmed by the whole-genome sequencing (WGS) of 10 base editors in regenerated rice plants. The R-loop assay was used to screen a series of rationally designed A3Bctd-BE3 variants for improved specificity. We obtained 2 efficient CBE variants, A3Bctd-VHM-BE3 and A3Bctd-KKR-BE3, and the WGS analysis revealed that these new CBEs eliminated sgRNA-independent DNA off-target edits in rice plants. Moreover, these 2 base editor variants were more precise at their target sites by producing fewer multiple C edits.


Asunto(s)
Citidina Desaminasa/genética , Citosina , Edición Génica/métodos , Antígenos de Histocompatibilidad Menor/genética , Oryza/genética , Citosina/química , Genes de Plantas , Humanos , Mutación , ARN Guía de Kinetoplastida/química , ARN de Planta/química , Reproducibilidad de los Resultados
4.
J Agric Food Chem ; 66(15): 3759-3772, 2018 Apr 18.
Artículo en Inglés | MEDLINE | ID: mdl-29613784

RESUMEN

Brassinosteroids (BRs) are essential plant-specific steroidal hormones that regulate diverse growth and developmental processes in plants. We evaluated the effects of OsDWF4, a gene that encodes a rate-limiting enzyme in BR biosynthesis, on both rice yield and quality when driven by the Gt1 or Ubi promoter, which correspond to seed-specific or constitutive expression, respectively. Generally, transgenic plants expressing OsDWF4 showed increased grain yield with more tillers and longer and heavier seeds. Moreover, the starch physicochemical properties of the transgenic rice were also improved. Interestingly, OsDWF4 was found to exert different effects on either rice yield or quality when driven by the different promoters. The overall performance of the pGt1::OsDWF4 lines was better than that of the pUbi::OsDWF4 lines. Our data not only demonstrate the effects of OsDWF4 overexpression on both rice yield and quality but also suggest that a seed-specific promoter is a good choice in BR-mediated rice breeding programs.


Asunto(s)
Brasinoesteroides/biosíntesis , Oryza/metabolismo , Proteínas de Plantas/genética , Regulación de la Expresión Génica de las Plantas , Oryza/enzimología , Oryza/genética , Oryza/crecimiento & desarrollo , Proteínas de Plantas/metabolismo , Plantas Modificadas Genéticamente/enzimología , Plantas Modificadas Genéticamente/genética , Plantas Modificadas Genéticamente/crecimiento & desarrollo , Plantas Modificadas Genéticamente/metabolismo , Semillas/genética , Semillas/crecimiento & desarrollo , Semillas/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...