Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 17 de 17
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
J Biomed Res ; : 1-12, 2024 Feb 25.
Artículo en Inglés | MEDLINE | ID: mdl-38808569

RESUMEN

Intracranial hemorrhage (ICH) causes numerous neurological deficits and deaths worldwide each year, leaving a significant health burden on the public. The pathophysiology of ICH is complicated, and involves both primary and secondary injury. Hematoma, as the prime pathology of ICH, undergoes metabolism and triggers biochemical and biomechanical alterations in the brain, leading to secondary injury. Past endeavors mainly aimed at biochemical-initiated mechanisms for causing secondary injury have made limited progress in recent years, although ICH itself is also highly biomechanics-related. The discovery of the mechanical-activated cation channel Piezo1 provides a new avenue to further explore underlying mechanisms of secondary injury. The current article reviews the structure and gating mechanisms of Piezo1, its roles in the physiology/pathophysiology of neurons, astrocytes, microglia, and bone-marrow-derived macrophages, and especially its roles in erythrocytic turnover and iron metabolism, revealing a potential interplay between the biomechanics and biochemistry of hematoma in ICH. Collectively, these advances provide deeper insights into the secondary injury of ICH and lay the foundations for future research.

2.
Brain Res ; 1837: 148855, 2024 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-38471644

RESUMEN

Subarachnoid hemorrhage (SAH) is characterized by the extravasation of blood into the subarachnoid space, in which erythrocyte lysis is the primary contributor to cell death and brain injuries. New evidence has indicated that meningeal lymphatic vessels (mLVs) are essential in guiding fluid and macromolecular waste from cerebrospinal fluid (CSF) into deep cervical lymph nodes (dCLNs). However, the role of mLVs in clearing erythrocytes after SAH has not been completely elucidated. Hence, we conducted a cross-species study. Autologous blood was injected into the subarachnoid space of rabbits and rats to induce SAH. Erythrocytes in the CSF were measured with/without deep cervical lymph vessels (dCLVs) ligation. Additionally, prior to inducing SAH, we administered rats with vascular endothelial growth factor C (VEGF-C), which is essential for meningeal lymphangiogenesis and maintaining integrity and survival of lymphatic vessels. The results showed that the blood clearance rate was significantly lower after dCLVs ligation in both the rat and rabbit models. DCLVs ligation aggravated neuroinflammation, neuronal damage, brain edema, and behavioral impairment after SAH. Conversely, the treatment of VEGF-C enhanced meningeal lymphatic drainage of erythrocytes and improved outcomes in SAH. In summary, our research highlights the indispensable role of the meningeal lymphatic pathway in the clearance of blood and mediating consequences after SAH.


Asunto(s)
Vasos Linfáticos , Ratas Sprague-Dawley , Hemorragia Subaracnoidea , Animales , Conejos , Hemorragia Subaracnoidea/metabolismo , Ratas , Masculino , Ligadura/métodos , Eritrocitos/metabolismo , Modelos Animales de Enfermedad , Factor C de Crecimiento Endotelial Vascular/metabolismo , Meninges , Edema Encefálico/metabolismo
4.
Mol Biol Rep ; 50(5): 4285-4299, 2023 May.
Artículo en Inglés | MEDLINE | ID: mdl-36917367

RESUMEN

BACKGROUND: Glioblastoma multiforme (GBM) is the most prevalent and malignant intracranial tumor with significant features of dismal prognosis and limited therapeutic solutions. Consequently, the present studies are committed to exploring potential biomarkers through bioinformatics analysis, which may serve as valuable prognostic predictors or novel therapeutic targets and provide new insights into the pathogenesis of GBM. METHODS: We filtered overlapping differentially expressed genes (DEGs) based on expression profilings from three GBM microarray datasets (GSE116520, GSE4290 and GSE68848) and combined RNA sequencing data from The Cancer Genome Atlas and the Genotype-Tissue Expression databases. Hub genes were prioritized from DEGs after performing protein-protein interaction (PPI) network analysis and weighted gene co-expression network analysis (WGCNA). This was followed by survival analysis to identify potential biomarkers among hub genes. Ultimately, the distributions of gene expressions, genetic alterations, upstream regulatory mechanisms and enrichments of gene functions of the identified biomarkers were analysed on public databases. QRT-PCR, immunohistochemical staining and western blotting was also used to confirm the gene expression patterns in GBM and normal brain tissues. CCK-8 assay clarified the effects of the genes on GBM cells. RESULTS: A total of 322 common DEGs were determined and nine genes were subsequently considered as hub genes by the combination of PPI network analysis and WGCNA. Only SLC12A5 had prognostic significance, which was deficient in GBM whereas especially enriched in normal neural tissues. SLC12A5 overexpression would inhibit cell proliferation of U251MG. Genetic alterations of SLC12A5 were rarely seen in GBM patients, and there was no apparent association existed between SLC12A5 expression and DNA methylation. SLC12A5 was prominently involved in ion transport, synapse and neurotransmitter. CONCLUSION: SLC12A5 shows promise to function as a novel effective biomarker for GBM and deserves further systematic research.


Asunto(s)
Neoplasias Encefálicas , Glioblastoma , Simportadores , Humanos , Biomarcadores de Tumor/genética , Biomarcadores de Tumor/metabolismo , Neoplasias Encefálicas/diagnóstico , Neoplasias Encefálicas/metabolismo , Biología Computacional , Perfilación de la Expresión Génica , Regulación Neoplásica de la Expresión Génica/genética , Redes Reguladoras de Genes , Glioblastoma/diagnóstico , Glioblastoma/metabolismo , Mapas de Interacción de Proteínas/genética , Simportadores/genética , Simportadores/metabolismo
5.
Front Mol Neurosci ; 15: 972615, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36311014

RESUMEN

Background: FOSB is reported to be an oncogene in a variety of tumors. However, the expression and role of FOSB in glioma remain obscure. In this study, we aimed to explore the expression of FOSB in glioma and its biological role in glioblastoma multiforme (GBM). Methods: Western blot, immunohistochemical staining, and quantitative real-time polymerase chain reaction (RT-qPCR) were used to detect the expression of FOSB in clinical samples. FOSB was knocked down in cells to determine the effects of FOSB on the phenotypic changes of tumors by plate cloning, CCK-8 assay, and Transwell assay. Finally, subcutaneous tumorigenesis in nude mice was used to observe the tumorigenesis of glioma cell lines after the knockdown of the FOSB gene. Results: FOSB expression was higher in glioma compared with normal brain tissue. After the downregulation of FOSB, the expression of cleaved caspase-3 increased. Plate cloning and CCK-8 experiments showed that the proliferation of glioma cell lines decreased. The Transwell assay demonstrated that the glioblastoma cell lines had lower migration ability after the knockdown of FOSB. Finally, the tumor volume of U87 glioma cells in group sh-FOSB was smaller than that in the control group. The TUNEL staining in vitro showed that the apoptosis of sh-FOSB glioma cells increased. Conclusion: FOSB was highly expressed in glioma tissues. The viability of glioma cells decreased, and the ability of glioma cells to proliferate and migrate was reduced when FOSB was downregulated. Hence, FOSB may promote the development and migration of gliomas.

6.
Biochem Biophys Res Commun ; 619: 34-41, 2022 09 03.
Artículo en Inglés | MEDLINE | ID: mdl-35728282

RESUMEN

Ferroptosis is a newly recognized form of regulated cell death. Recently, growing evidence has shown that ferroptosis is involved in the pathogenesis of traumatic brain injury (TBI). However, less attention has been paid to its role in brain microvascular endothelial cells (BMVECs) and blood-brain barrier (BBB) damage, the central pathological process in secondary brain injury of TBI. Here, we established a mechanical stretch injury bEnd.3 model and a Controlled Cortical Impact (CCI) mouse model to explore the ferroptosis-related markers in brain endothelial cells after TBI in vitro and in vivo. From the results of RNA-seq analysis, RT-qPCR and immunostaining, glutathione peroxidase 4 (GPX4) downregulation, Cyclooxygenase-2 (COX-2) upregulation, and iron accumulation were observed in brain endothelial cells after TBI both in vitro and in vivo. Furthermore, we utilized Ferrostatin-1 (Fer-1), a specific inhibitor of ferroptosis, to investigate the protective effects of ferroptosis inhibition on BBB disruption and neurological deficits. From the results of immunostaining, transmission electron microscopy (TEM), and western blotting, we demonstrated that Fer-1 significantly reduced BMVECs death, BBB permeability, and tight junction loss at 3 days after TBI. The neurological tests including grid walking, rotarod test, and wire-hanging test showed that Fer-1 administration exerted neuroprotective effects in the early stage of TBI. Our findings provided evidences for inhibition of BMVECs ferroptosis as a promising therapeutic target against TBI-induced BBB disruption.


Asunto(s)
Lesiones Traumáticas del Encéfalo , Ferroptosis , Animales , Barrera Hematoencefálica/metabolismo , Encéfalo/metabolismo , Lesiones Traumáticas del Encéfalo/patología , Células Endoteliales/metabolismo , Ratones , Ratones Endogámicos C57BL
7.
Brain Res ; 1769: 147591, 2021 10 15.
Artículo en Inglés | MEDLINE | ID: mdl-34324877

RESUMEN

Traumatic brain injury (TBI) is a significant cause of disability and death worldwide. Accumulating evidence suggests that endoplasmic reticulum (ER) stress would be an important component in the pathogenesis of TBI. Although the neuroprotective effects of naringenin, a natural flavonoid isolated from citrus plants, have been confirmed in several neurological diseases, its mechanism of action in TBI needs further investigation. In ICR mice, we found that TBI induced elevated expression of ER stress marker proteins, including 78-kDa glucose-regulated protein (GRP78) and C/EBP homologous protein (CHOP) in the perilesional cortex, which peaked at 7 days and 3 days after TBI, respectively. The induction of ER stress-related proteins partly coincided with ER architectural changes at 3 days post-TBI, indicating ER stress activation in our TBI model. Our results also revealed that continuous naringenin administration ameliorated neurological dysfunction, cerebral edema, plasmalemma permeability, and neuron cell loss at day 3 after TBI. Further, Naringenin suppressed TBI-induced activation of the ER stress pathway (p-eIF2α, ATF4, and CHOP), oxidative stress and apoptosis on day 3 after TBI. In summary, our data suggest that naringenin could ameliorate TBI-induced secondary brain injury by pleiotropic effects, including ER stress attenuation.


Asunto(s)
Apoptosis/efectos de los fármacos , Lesiones Traumáticas del Encéfalo/tratamiento farmacológico , Lesiones Traumáticas del Encéfalo/patología , Estrés del Retículo Endoplásmico/efectos de los fármacos , Flavanonas/uso terapéutico , Fármacos Neuroprotectores/uso terapéutico , Recuperación de la Función/efectos de los fármacos , Animales , Corteza Cerebral/lesiones , Corteza Cerebral/patología , Retículo Endoplásmico/metabolismo , Retículo Endoplásmico/patología , Chaperón BiP del Retículo Endoplásmico/metabolismo , Flavanonas/farmacología , Masculino , Ratones , Ratones Endogámicos ICR , Fármacos Neuroprotectores/farmacología , Transducción de Señal/efectos de los fármacos , Factor de Transcripción CHOP/metabolismo
8.
DNA Cell Biol ; 40(7): 949-968, 2021 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-34115542

RESUMEN

Glioma is the most common type of primary tumor in the central nervous system, and the molecular mechanisms remain elusive. N-myc downstream-regulated gene (NDRG) family is reported to take part in the pathogenesis of various diseases, including some preliminary exploration in glioma. However, there has been no bioinformatics analysis of NDRG family in glioma yet. Herein, we focused on the expression changes of NDRGs with their value in predicting patients' prognoses, upstream regulatory mechanisms (DNA mutation, DNA methylation, transcription factors, and microRNA regulation) and gene enrichment analysis based on co-expressed genes with data from public databases. Furthermore, the expression pattern of NDRGs was verified by the paired glioma and peritumoral samples in our institute. It was suggested that NDRGs were differentially expressed genes in glioma. In particular, the lower expression of NDRG2 or NDRG4 could serve as a predictor of higher grade tumor and poorer prognosis. Also, NDRGs might play a crucial role in signal transduction, energy metabolism, and cross-talk among cells in glioma, under the control of a complex regulatory network. This study enables us to better understand the role of NDRGs in glioma and with further research, it may contribute to the development of glioma treatment.


Asunto(s)
Glioma/genética , Proteínas Supresoras de Tumor/genética , Neoplasias Encefálicas/patología , Proteínas de Ciclo Celular/genética , China , Biología Computacional/métodos , Bases de Datos Genéticas , Perfilación de la Expresión Génica/métodos , Regulación Neoplásica de la Expresión Génica/genética , Glioma/metabolismo , Humanos , Péptidos y Proteínas de Señalización Intracelular/genética , Proteínas Musculares/genética , Proteínas Musculares/metabolismo , Proteínas del Tejido Nervioso/genética , Proteínas del Tejido Nervioso/metabolismo , Pronóstico , Factores de Transcripción/genética , Proteínas Supresoras de Tumor/metabolismo
9.
Mol Neurobiol ; 58(4): 1438-1452, 2021 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-33190170

RESUMEN

Smarcd1 is a component of an evolutionary conserved chromatin remodeling complex-SWI/SNF, which is involved in transcription factor recruitment, DNA replication, recombination, and repair. Suppression of the SWI/SNF complex required for cellular differentiation and gene regulation may be inducible for cell proliferation and tumorigenicity. However, the inhibitory role of Smarcd1 in human glioblastoma cells has not been well illustrated. Both U87 and U251 human glioblastoma cell lines were employed in the present study. The lentivirus-mediated gene knockdown and overexpression approach was conducted to determine the function of Smarcd1. The protein levels were tested by western blot, and the relative mRNA contents were detected by quantitative real-time PCR. Cell viability was tested by CCK-8 and colony-forming assay. Transwell assays were utilized to evaluate the motility and invasive ability. Flow cytometry was employed to analyze cell cycle and apoptosis. SPSS software was used for statistical analysis. Low expression of Smarcd1 was observed in glioblastoma cell lines and in patients with high-grade glioma. Importantly, the depletion of Smarcd1 promoted cell proliferation, invasion, and chemoresistance, whereas enhanced expression of Smarcd1 inhibited tumor-malignant phenotypes. Mechanistic research demonstrated that overexpression of Smarcd1 decreased the expression of Notch1, while knockdown of Notch1 increased the expression of Smarcd1 through Hes1 suppression. Hence, the crosstalk between Smarcd1 and Notch1, which formed a feedback loop, was crucial in regulation of glioblastoma malignant phenotypes. Furthermore, targeting Smarcd1 could be a potential strategy for human glioblastoma treatment.


Asunto(s)
Neoplasias Encefálicas/metabolismo , Neoplasias Encefálicas/patología , Proteínas Cromosómicas no Histona/metabolismo , Glioblastoma/metabolismo , Glioblastoma/patología , Receptor Notch1/metabolismo , Animales , Apoptosis/efectos de los fármacos , Apoptosis/genética , Neoplasias Encefálicas/tratamiento farmacológico , Neoplasias Encefálicas/genética , Puntos de Control del Ciclo Celular/efectos de los fármacos , Puntos de Control del Ciclo Celular/genética , Línea Celular Tumoral , Movimiento Celular/efectos de los fármacos , Movimiento Celular/genética , Proliferación Celular/efectos de los fármacos , Proliferación Celular/genética , Regulación hacia Abajo/efectos de los fármacos , Regulación hacia Abajo/genética , Fase G1/efectos de los fármacos , Fase G1/genética , Regulación Neoplásica de la Expresión Génica/efectos de los fármacos , Glioblastoma/tratamiento farmacológico , Glioblastoma/genética , Humanos , Masculino , Ratones Endogámicos BALB C , Ratones Desnudos , Invasividad Neoplásica , Fenotipo , Transducción de Señal/efectos de los fármacos , Temozolomida/farmacología , Factor de Transcripción HES-1/genética , Factor de Transcripción HES-1/metabolismo , Transcripción Genética/efectos de los fármacos , Proteína p53 Supresora de Tumor/metabolismo
10.
Onco Targets Ther ; 13: 7433-7445, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32801766

RESUMEN

BACKGROUND: Glioma is formed by abnormal proliferation of glial cells in the brain. T cell immunoglobulin and mucin 1 (Tim-1) is linked to cancer development. This study aimed to assess Tim-1 functions in biological behaviors. METHODS: The glioma tissues and paracancerous tissues were collected. The pathological morphology of glioma and positive expression of Tim-1 were evaluated. The sh-Tim-1 lentivirus vector was infected into U251 and U87 cells to evaluate glioma cell malignant behaviors. The differentially expressed terms in glioma cells were analyzed by Agilent microarray analysis, and enrichment analyses were performed. Levels of cytokines (TGF-ß1, IL-6, IL-4 and IL-10) and the PI3K/AKT pathway were measured. U87 cells with sh-Tim-1 were transplanted into nude mice, and the volume and weight of tumors were measured. RESULTS: Tim-1 levels in glioma tissues and cells were higher than those in glial tissues and cells. Tim-1 knockdown prevented glioma cell proliferation, invasion and migration, and reduced TGF-ß1, IL-6, IL-4 and IL-10 levels of glioma. Co-treatment of PI3K/AKT pathway activator and knockdown Tim-1 partially reversed these outcomes. After Tim-1 knockdown, tumor volume and weight and Ki67-positive rate of nude mice were diminished. CONCLUSION: Tim-1 knockdown inhibited biological behaviors of glioma cells through the PI3K/AKT pathway, which may provide a novel therapy for glioma.

11.
Biosci Rep ; 40(6)2020 06 26.
Artículo en Inglés | MEDLINE | ID: mdl-32452511

RESUMEN

It has been demonstrated from previous studies about the killing effect of dihydroartemisinin (DHA) on glioblastoma, which involves multiple aspects: cytotoxicity, cell cycle arrest and invasion inhibition. DHA has the advantages of low cytotoxicity to normal cells, selective killing effect and low drug resistance, making it one of the popular anti-tumor research directions. Ferroptosis is a newly discovered form of cell death characterized by iron dependence and lipid reactive oxygen species (ROS) accumulation. In the present study, we found differences in the expression of transferrin receptors in normal human astrocytes (NHA) and glioblastoma cells (U87 and A172), which may be one of the mechanisms of DHA selective killing effect. Through the determination of ferroptosis-related protein expression, we found that the significant decrease of GPX4, accompanied by the constant expression of xCT and ACSL4, suggesting GPX4 was a pivotal target for DHA-activated ferroptosis in glioblastoma. Total and lipid ROS levels were increased and all these results could be reversed by the ferroptosis inhibitor, ferrostatin-1. These findings demonstrated ferroptosis would be a critical component of cell death caused by DHA and GPX4 was the main target. All these results provide a novel treatment direction to glioblastoma. The association between ferroptosis and polyamines is also discussed, which will provide new research directions for ferroptosis caused by DHA in glioblastoma.


Asunto(s)
Antineoplásicos Fitogénicos/farmacología , Artemisininas/farmacología , Neoplasias Encefálicas/tratamiento farmacológico , Inhibidores Enzimáticos/farmacología , Ferroptosis/efectos de los fármacos , Glioblastoma/tratamiento farmacológico , Fosfolípido Hidroperóxido Glutatión Peroxidasa/antagonistas & inhibidores , Neoplasias Encefálicas/enzimología , Neoplasias Encefálicas/ultraestructura , Línea Celular Tumoral , Glioblastoma/enzimología , Glioblastoma/ultraestructura , Humanos , Fosfolípido Hidroperóxido Glutatión Peroxidasa/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Receptores de Transferrina/metabolismo , Transducción de Señal
12.
Life Sci ; 247: 117436, 2020 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-32070707

RESUMEN

BACKGROUND AND AIM: Forkhead box protein O4 (FOXO4) is a transcription factor, and aberrant FOXO4 expression is associated with development of various human cancers. This study explored the role of FOXO4 in glioma in vitro and in vivo. METHODS: FOXO4 expression was first assessed in normal brain tissues, low-grade glioma, glioblastoma multiforme (GBM), normal human astrocytes (HA), and GBM cell lines, while manipulation of FOXO4 expression in glioma cell lines was assessed using qRT-PCR, Western blot, and cell viability CCK-8, Transwell, and a nude mouse subcutaneous xenograft assays. KEY FINDINGS: The data showed downregulated FOXO4 expression in GBM tissues and cell lines. FOXO4 overexpression induced by transfection with FOXO4 cDNA significantly inhibited GBM cell proliferation, migration, and invasion, but increased tumor cells to undergo apoptosis in vitro, while suppressed growth of GBM cell subcutaneous xenografts in nude mice. In conclusion, FOXO4 possesses an anti-cancer glioma activity, which could be a novel target for future control of GBM.


Asunto(s)
Neoplasias Encefálicas/genética , Neoplasias Encefálicas/metabolismo , Proteínas de Ciclo Celular/genética , Factores de Transcripción Forkhead/genética , Glioblastoma/genética , Glioblastoma/metabolismo , Animales , Línea Celular Tumoral , Regulación hacia Abajo , Regulación Neoplásica de la Expresión Génica , Humanos , Masculino , Ratones Endogámicos BALB C , Ratones Desnudos , Fenotipo , Transfección , Ensayos Antitumor por Modelo de Xenoinjerto
13.
Brain Res Bull ; 157: 26-36, 2020 04.
Artículo en Inglés | MEDLINE | ID: mdl-32014567

RESUMEN

Sodium aescinate (SA), a natural plant extract, has been proven to provide neuroprotection in neurological diseases. However, its role and the underlying pathophysiological mechanisms in traumatic brain injury (TBI) are still not well understood. The present study was aimed to investigate the protective effects of SA in both in vivo and in vitro TBI models. Mice or neurons were randomly divided into control, TBI, TBI + vehicle and TBI + SA groups. Neurologic severity score (NSS) was used to evaluate the neurological impairment. Brain water content and lesion volume were used to assess the brain injury degree. Malondialdehyde (MDA) and glutathione peroxidase (GPx) levels were used to estimate oxidative stress. Western blot was used to determine the protein levels. Nissl and terminal deoxynucleotidyl transferase-mediated dUTP nick 3'-end labeling (TUNEL) staining were used to measure cell death and apoptosis. Our results revealed that treatment of SA could improve neurological function, decrease cerebral edema and attenuate brain lesion after TBI. Furthermore, administration of SA suppressed TBI-induced oxidative stress, neuron cell death and apoptosis. In addition, SA activated the nuclear factor erythroid 2-related factor 2 (Nrf2)-antioxidant response element (ARE) pathway after TBI. However, SA failed to provide neuroprotection following TBI in Nrf2-/- mice. Taken together, our results provided the first evidence that SA treatment played a key role in neuroprotection after TBI through the Nrf2-ARE pathway.


Asunto(s)
Elementos de Respuesta Antioxidante/efectos de los fármacos , Lesiones Traumáticas del Encéfalo/sangre , Lesiones Traumáticas del Encéfalo/tratamiento farmacológico , Lesiones Encefálicas/tratamiento farmacológico , Saponinas/metabolismo , Triterpenos/metabolismo , Animales , Encéfalo/efectos de los fármacos , Encéfalo/metabolismo , Lesiones Encefálicas/patología , Lesiones Traumáticas del Encéfalo/patología , Modelos Animales de Enfermedad , Masculino , Ratones Endogámicos ICR , Factor 2 Relacionado con NF-E2/efectos de los fármacos , Factor 2 Relacionado con NF-E2/metabolismo , Neuronas/efectos de los fármacos , Neuroprotección/efectos de los fármacos , Fármacos Neuroprotectores/farmacología , Estrés Oxidativo/efectos de los fármacos
14.
Front Oncol ; 10: 516746, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-33425712

RESUMEN

Cathepsin S (CTSS), a lysosomal cysteine protease, is overexpressed in various cancers, including glioblastoma (GB). A high level of CTSS is associated with tumor progression and poor outcome in GB. However, the underlying mechanisms of its role in the biological characteristics of G5B remain to be elucidated. Here, we uncovered a potential role of CTSS in the lysosomes and mitochondria of GB cells (GBCs). Downregulation of CTSS in GBCs could increase the expression of autophagy-related proteins; however, there was no significant change in p62, suggesting autophagy blockade. Moreover, inhibition of CTSS increased the expression of mitochondrial calcium uniporter (MCU) and enhanced mitochondrial Ca2+ uptake ability, causing mitochondrial Ca2+ overload, the generation of copious reactive oxygen species (ROS) and eventual mitochondrial apoptosis. Additionally, elevated damage to mitochondria exacerbated the burden of autophagy. Finally, we found that silence of MCU could alleviate the inhibition of CTSS-induced autophagosome accumulation and mitochondrial stress. Collectively, these results demonstrate that CTSS plays an important role in the process of autophagic flux and mitochondrial functions in GBCs.

15.
Biochem Biophys Res Commun ; 523(2): 361-367, 2020 03 05.
Artículo en Inglés | MEDLINE | ID: mdl-31866008

RESUMEN

Traumatic brain injury (TBI) represents a major cause of death and disability worldwide. Exacerbated neuroinflammation following TBI causes secondary injury. Podoplanin (PDPN) is a small transmembrane mucin-like glycoprotein that promotes the inflammatory response in different tissues and cells. However, the contribution of PDPN to neuroinflammation and microglial activation is unknown. Here, we found that PDPN was correlated with microglial activation after TBI in mice. Meanwhile, PDPN expression could be induced by trauma-related stimuli, such as lipopolysaccharide (LPS), ATP, H2O2 and hemoglobin (Hb), in primary microglia. Furthermore, with Hb treatment in vitro, knockdown of PDPN could decrease the proportion of M1-like microglia and increase the proportion of M2-like microglia via reduced secretion of IL-1ß and TNF-α and increased secretion of IL-10 and TGF-ß compared to the control microglia. Immunofluorescence also showed that CD86-positive microglia were decreased and CD206-positive microglia were elevated in the PDPN-KD group. Additionally, PDPN knockdown impaired microglial mobility and phagocytosis and decreased the expression of matrix metalloproteinases (mainly MMP2 and MMP9). In summary, PDPN plays an important role in microglia-mediated inflammation and may serve as a potential target for TBI treatment.


Asunto(s)
Lesiones Traumáticas del Encéfalo/fisiopatología , Glicoproteínas de Membrana/fisiología , Animales , Lesiones Traumáticas del Encéfalo/genética , Lesiones Traumáticas del Encéfalo/patología , Movimiento Celular , Células Cultivadas , Modelos Animales de Enfermedad , Perfilación de la Expresión Génica , Técnicas de Silenciamiento del Gen , Hemoglobinas/administración & dosificación , Humanos , Inflamación/genética , Inflamación/patología , Inflamación/fisiopatología , Masculino , Metaloproteinasa 2 de la Matriz/metabolismo , Metaloproteinasa 9 de la Matriz/metabolismo , Glicoproteínas de Membrana/antagonistas & inhibidores , Glicoproteínas de Membrana/genética , Ratones , Ratones Endogámicos ICR , Microglía/clasificación , Microglía/patología , Microglía/fisiología , Fagocitosis , Fenotipo
16.
Drug Des Devel Ther ; 12: 3247-3261, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-30323558

RESUMEN

OBJECTIVE: Baicalin, a kind of flavonoid extracted from the dry root of Scutellaria, possesses potent anticancer bioactivities in various tumor cell lines. Accumulating evidences show that baicalin induces autophagy and apoptosis to suppress the cancer growth. Moreover, the antineoplastic role of baicalin in human glioblastoma cells remains to be uncovered. METHODS: Both U87 and U251 human glioblastoma cell lines were employed in the present study. Cell viability was tested by Cell Counting Kit-8 and colony-forming assay; Flow cytometry was employed to analyze cell apoptosis, cell cycle, and Ca2+ content. Cell immunofluorescence assays were used for analyzing terminal deoxynucleotidyl transferase dUTP nick end labeling (TUNEL), light chain 3 beta (LC3B), 5,5',6,6'-Tetrachloro-1,1',3,3'-tetraethyl-imidacarbocyanineiodide (JC-1), and Ca2+ content. The protein levels were tested by Western blot. The SPSS software was used for statistical analysis. RESULTS: Baicalin suppressed the proliferation, migration, and invasion ability of human glioblastoma cells in a dose-dependent manner. Baicalin induced the loss of mitochondrial membrane potential and led to mitochondrial apoptosis. The maturation of microtubule-associated protein 1A/1B-LC3B indicated the activation of autophagy potentially through PI3K/Akt/mTOR pathway, and inhibition of autophagy by 3-methyladenine decreased the apoptotic cell ratio. Besides, baicalin increased the intercellular Ca2+ content; meanwhile, chelation of free Ca2+ by 1,2-bis(o-aminophenoxy)ethane-N,N,N',N'-tetraacetic acid inhibited both apoptotic and autophagy. Finally, baicalin suppressed tumor growth in vivo. CONCLUSION: Our observations suggest that baicalin exerts cytotoxic effects on human glioblastoma cells by the autophagy-related apoptosis through Ca2+ movement to the cytosol. Furthermore, baicalin has the potential as a candidate for the treatment of glioblastoma.


Asunto(s)
Antineoplásicos Fitogénicos/farmacología , Calcio/metabolismo , Movimiento Celular/efectos de los fármacos , Flavonoides/farmacología , Glioblastoma/tratamiento farmacológico , Glioblastoma/patología , Invasividad Neoplásica/prevención & control , Animales , Antineoplásicos Fitogénicos/química , Antineoplásicos Fitogénicos/aislamiento & purificación , Apoptosis/efectos de los fármacos , Proliferación Celular/efectos de los fármacos , Supervivencia Celular/efectos de los fármacos , Relación Dosis-Respuesta a Droga , Ensayos de Selección de Medicamentos Antitumorales , Flavonoides/química , Flavonoides/aislamiento & purificación , Glioblastoma/metabolismo , Humanos , Masculino , Potencial de la Membrana Mitocondrial/efectos de los fármacos , Ratones , Ratones Endogámicos BALB C , Ratones Desnudos , Raíces de Plantas/química , Scutellaria/química , Relación Estructura-Actividad , Células Tumorales Cultivadas
17.
Front Neurosci ; 12: 1006, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-30686973

RESUMEN

Autophagy is associated with secondary injury following traumatic brain injury (TBI) and is expected to be a therapeutic target. Baicalin, a neuroprotective agent, has been proven to exert multi-functional bioactive effects in brain injury diseases. However, it is unknown if Baicalin influences autophagy after TBI. In the present study, we aimed to explore the effects that Baicalin had on TBI in a mice model, focusing on autophagy as a potential mechanism. We found that Baicalin administration significantly improved motor function, reduced cerebral edema, and alleviated disruption of the blood-brain barrier (BBB) after TBI in mice. Besides, TBI-induced apoptosis was reversed by Baicalin evidenced by Nissl staining, terminal deoxynucleotidyl transferase dUTP nick end labeling (TUNEL) assay, and the level of cleaved caspase-3. More importantly, Baicalin enhanced autophagy by detecting the autophagy markers (LC3, Beclin 1, and p62) using western blot and LC3 immunofluorescence staining, ameliorating mitochondrial apoptotic pathway evidenced by restoration of the TBI-induced translocation of Bax and cytochrome C. However, simultaneous treatment with 3-MA inhibited Baicalin-induced autophagy and abolished its protective effects on mitochondrial apoptotic pathway. In conclusion, we demonstrated that Baicalin enhanced autophagy, ameliorated mitochondrial apoptosis and protected mice brain in TBI mice model.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...