Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Bioresour Technol ; 385: 129383, 2023 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-37355141

RESUMEN

Biological methanation of H2 and CO2 in trickle bed reactors is a promising energy conversion and storage approach that can support the energy transition towards a renewable-based system. Research in trickle bed reactor design and operation has significantly increased in recent years, but most studies were performed at laboratory scale and conditions. This review provides a comprehensive overview of the trickle bed reactor concept and current developments to support the decision-making process for future projects. In particular, the key design and operational parameters, such as trickling or nutrient provision, are presented, introducing the most recent advances. Furthermore, reactor operation, including the inoculation, long-term and dynamic operation, is described. To better assess the reactor upscaling, several parameters that enable reactor comparison are discussed. On the basis of this review, suitable operational strategies and further research needs were identified that will improve the overall trickle bed reactor performance.

2.
Bioresour Technol ; 376: 128868, 2023 May.
Artículo en Inglés | MEDLINE | ID: mdl-36907226

RESUMEN

The biological methanation of H2 and CO2 in trickle bed reactors is one promising energy conversion technology for energy storage, but experiences at pilot-scale under real application conditions are still rare. Therefore, a trickle bed reactor with a reaction volume of 0.8 m3 was constructed and installed in a wastewater treatment plant to upgrade raw biogas from the local digester. The biogas H2S concentration of about200 ppm was reduced by half, but an artificial sulfur source was required to completely satisfy the sulfur demand of the methanogens. Increasing the ammonium concentration to > 400 mg/L was the most successful pH control strategy, enabling stable long-term biogas upgrading at a CH4 production of 6.1 m3/(m3RV·d) with synthetic natural gas quality (CH4 > 98%). The results of this study with a reactor operation period of nearly 450 days, including two shutdowns, represents an important step towards the necessary full-scale integration.


Asunto(s)
Reactores Biológicos , Euryarchaeota , Biocombustibles , Metano , Tecnología , Dióxido de Carbono
3.
Bioresour Technol ; 371: 128648, 2023 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-36681350

RESUMEN

Biological methanation of H2 and CO2 is a potential energy conversion technology that can support the energy transition based on renewable sources. The methanation performance in trickle bed reactors can be improved by approaching the gas flow through the reactor towards plug flow. Through preliminary gas flow experiments without biological conversion, this study investigated operational and constructional conditions that enhance plug flow in a pilot-scale trickle bed reactor with 1 m3 gas volume. An improved gas flow was observed when the feed gas was applied in a top-to-bottom direction and when the process liquid was not trickled through the packing bed. Furthermore, the gas flow experiments identified reactor-specific properties, such as unused or dead volumes. Applying gas flow experiments prior to reactor start-up is recommended as a simple and convenient method to identify individual reactor properties and optimization potentials for higher methanation performance.


Asunto(s)
Reactores Biológicos , Dióxido de Carbono , Metano , Tecnología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...