Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Bioinformatics ; 40(4)2024 Mar 29.
Artículo en Inglés | MEDLINE | ID: mdl-38514403

RESUMEN

MOTIVATION: Due to the link between microglial morphology and function, morphological changes in microglia are frequently used to identify pathological immune responses in the central nervous system. In the absence of pathology, microglia are responsible for maintaining homeostasis, and their morphology can be indicative of how the healthy brain behaves in the presence of external stimuli and genetic differences. Despite recent interest in high throughput methods for morphological analysis, Sholl analysis is still widely used for quantifying microglia morphology via imaging data. Often, the raw data are naturally hierarchical, minimally including many cells per image and many images per animal. However, existing methods for performing downstream inference on Sholl data rely on truncating this hierarchy so rudimentary statistical testing procedures can be used. RESULTS: To fill this longstanding gap, we introduce a parametric hierarchical Bayesian model-based approach for analyzing Sholl data, so that inference can be performed without aggressive reduction of otherwise very rich data. We apply our model to real data and perform simulation studies comparing the proposed method with a popular alternative. AVAILABILITY AND IMPLEMENTATION: Software to reproduce the results presented in this article is available at: https://github.com/vonkaenelerik/hierarchical_sholl. An R package implementing the proposed models is available at: https://github.com/vonkaenelerik/ShollBayes.


Asunto(s)
Programas Informáticos , Animales , Teorema de Bayes , Simulación por Computador
2.
Res Sq ; 2024 Feb 26.
Artículo en Inglés | MEDLINE | ID: mdl-38464247

RESUMEN

Norepinephrine (NE) is a potent anti-inflammatory agent in the brain. In Alzheimer's disease (AD), the loss of NE signaling heightens neuroinflammation and exacerbates amyloid pathology. NE inhibits surveillance activity of microglia, the brain's resident immune cells, via their ß2 adrenergic receptors (ß2ARs). Here, we investigate the role of microglial ß2AR signaling in AD pathology in the 5xFAD mouse model of AD. We found that loss of cortical NE projections preceded the degeneration of NE-producing neurons and that microglia in 5xFAD mice, especially those microglia that were associated with plaques, significantly downregulated ß2AR gene expression early in amyloid pathology. Importantly, dampening microglial ß2AR signaling worsened plaque load and the associated neuritic damage, while stimulating microglial ß2AR signaling attenuated amyloid pathology. Our results suggest that microglial ß2AR could be explored as a potential therapeutic target to modify AD pathology.

3.
Methods Mol Biol ; 2636: 205-219, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36881302

RESUMEN

Many human optic neuropathies lead to crippling conditions resulting in partial or complete loss of vision. While the retina is made up of several different cell types, retinal ganglion cells (RGCs) are the only cell type connecting the eye to the brain. Optic nerve crush injuries, wherein RGC axons are damaged without severing the optic nerve sheath, can serve as a model for traumatic optical neuropathies as well as some progressive neuropathies such as glaucoma. In this chapter, we describe two different surgical methods for establishing an optic nerve crush (ONC) injury in the postmetamorphic frog, Xenopus laevis. Why use the frog as an animal model? Mammals lose the ability to regenerate damaged CNS neurons, but amphibians and fish retain the ability to regenerate new RGC bodies and regrow RGC axons following an injury. In addition to presenting two different surgical ONC injury methods, we highlight their advantages and disadvantages and discuss the distinctive characteristics of Xenopus laevis as an animal model for studying CNS regeneration.


Asunto(s)
Lesiones por Aplastamiento , Traumatismos de los Nervios Periféricos , Animales , Humanos , Xenopus laevis , Retina/cirugía , Anuros , Nervio Óptico , Mamíferos
4.
bioRxiv ; 2023 Jan 23.
Artículo en Inglés | MEDLINE | ID: mdl-36747628

RESUMEN

Due to the link between microglial morphology and function, morphological changes in microglia are frequently used to identify pathological immune responses in the central nervous system. In the absence of pathology, microglia are responsible for maintaining homeostasis, and their morphology can be indicative of how the healthy brain behaves in the presence of external stimuli and genetic differences. Despite recent interest in high throughput methods for morphological analysis, Sholl analysis is still the gold standard for quantifying microglia morphology via imaging data. Often, the raw data are naturally hierarchical, minimally including many cells per image and many images per animal. However, existing methods for performing downstream inference on Sholl data rely on truncating this hierarchy so rudimentary statistical testing procedures can be used. To fill this longstanding gap, we introduce a fully parametric model-based approach for analyzing Sholl data. We generalize our model to a hierarchical Bayesian framework so that inference can be performed without aggressive reduction of otherwise very rich data. We apply our model to three real data examples and perform simulation studies comparing the proposed method with a popular alternative.

5.
Nat Commun ; 13(1): 6585, 2022 11 03.
Artículo en Inglés | MEDLINE | ID: mdl-36329008

RESUMEN

The intrinsically disordered RG/RGG repeat domain is found in several nucleolar and P-granule proteins, but how it influences their phase separation into biomolecular condensates is unclear. We survey all RG/RGG repeats in C. elegans and uncover nucleolar and P-granule-specific RG/RGG motifs. An uncharacterized protein, K07H8.10, contains the longest nucleolar-like RG/RGG domain in C. elegans. Domain and sequence similarity, as well as nucleolar localization, reveals K07H8.10 (NUCL-1) to be the homolog of Nucleolin, a protein conserved across animals, plants, and fungi, but previously thought to be absent in nematodes. Deleting the RG/RGG repeats within endogenous NUCL-1 and a second nucleolar protein, GARR-1 (GAR1), demonstrates these domains are dispensable for nucleolar accumulation. Instead, their RG/RGG repeats contribute to the phase separation of proteins into nucleolar sub-compartments. Despite this common RG/RGG repeat function, only removal of the GARR-1 RG/RGG domain affects worm fertility and development, decoupling precise sub-nucleolar structure from nucleolar function.


Asunto(s)
Caenorhabditis elegans , Proteínas de Unión al ARN , Animales , Caenorhabditis elegans/genética , Caenorhabditis elegans/metabolismo , Proteínas de Unión al ARN/metabolismo , Fosfoproteínas/genética , Fosfoproteínas/metabolismo , Nucléolo Celular/metabolismo , Nucleolina
6.
Nat Commun ; 12(1): 5758, 2021 10 01.
Artículo en Inglés | MEDLINE | ID: mdl-34599173

RESUMEN

Various behavioral and cognitive states exhibit circadian variations in animals across phyla including Drosophila melanogaster, in which only ~0.1% of the brain's neurons contain circadian clocks. Clock neurons transmit the timing information to a plethora of non-clock neurons via poorly understood mechanisms. Here, we address the molecular underpinning of this phenomenon by profiling circadian gene expression in non-clock neurons that constitute the mushroom body, the center of associative learning and sleep regulation. We show that circadian clocks drive rhythmic expression of hundreds of genes in mushroom body neurons, including the Neurofibromin 1 (Nf1) tumor suppressor gene and Pka-C1. Circadian clocks also drive calcium rhythms in mushroom body neurons via NF1-cAMP/PKA-C1 signaling, eliciting higher mushroom body activity during the day than at night, thereby promoting daytime wakefulness. These findings reveal the pervasive, non-cell-autonomous circadian regulation of gene expression in the brain and its role in sleep.


Asunto(s)
Relojes Circadianos/fisiología , Proteínas de Drosophila/metabolismo , Cuerpos Pedunculados/metabolismo , Proteínas del Tejido Nervioso/metabolismo , Neuronas/metabolismo , Proteínas Activadoras de ras GTPasa/metabolismo , Animales , AMP Cíclico/metabolismo , Proteínas Quinasas Dependientes de AMP Cíclico/metabolismo , Drosophila melanogaster , Regulación de la Expresión Génica/fisiología , Modelos Animales , Cuerpos Pedunculados/citología , RNA-Seq , Transducción de Señal/fisiología , Sueño/fisiología , Vigilia/fisiología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...