Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros













Base de datos
Intervalo de año de publicación
1.
J Neural Eng ; 21(3)2024 May 17.
Artículo en Inglés | MEDLINE | ID: mdl-38701768

RESUMEN

Deep brain stimulation (DBS) is a therapy for Parkinson's disease (PD) and essential tremor (ET). The mechanism of action of DBS is still incompletely understood. Retrospective group analysis of intra-operative data recorded from ET patients implanted in the ventral intermediate nucleus of the thalamus (Vim) is rare. Intra-operative stimulation tests generate rich data and their use in group analysis has not yet been explored.Objective.To implement, evaluate, and apply a group analysis workflow to generate probabilistic stimulation maps (PSMs) using intra-operative stimulation data from ET patients implanted in Vim.Approach.A group-specific anatomical template was constructed based on the magnetic resonance imaging scans of 6 ET patients and 13 PD patients. Intra-operative test data (total:n= 1821) from the 6 ET patients was analyzed: patient-specific electric field simulations together with tremor assessments obtained by a wrist-based acceleration sensor were transferred to this template. Occurrence and weighted mean maps were generated. Voxels associated with symptomatic response were identified through a linear mixed model approach to form a PSM. Improvements predicted by the PSM were compared to those clinically assessed. Finally, the PSM clusters were compared to those obtained in a multicenter study using data from chronic stimulation effects in ET.Main results.Regions responsible for improvement identified on the PSM were in the posterior sub-thalamic area (PSA) and at the border between the Vim and ventro-oral nucleus of the thalamus (VO). The comparison with literature revealed a center-to-center distance of less than 5 mm and an overlap score (Dice) of 0.4 between the significant clusters. Our workflow and intra-operative test data from 6 ET-Vim patients identified effective stimulation areas in PSA and around Vim and VO, affirming existing medical literature.Significance.This study supports the potential of probabilistic analysis of intra-operative stimulation test data to reveal DBS's action mechanisms and to assist surgical planning.


Asunto(s)
Estimulación Encefálica Profunda , Temblor Esencial , Tálamo , Humanos , Temblor Esencial/terapia , Temblor Esencial/fisiopatología , Temblor Esencial/diagnóstico por imagen , Estimulación Encefálica Profunda/métodos , Femenino , Masculino , Anciano , Persona de Mediana Edad , Tálamo/diagnóstico por imagen , Tálamo/fisiopatología , Mapeo Encefálico/métodos , Estudios Retrospectivos , Imagen por Resonancia Magnética/métodos , Núcleos Talámicos Ventrales/diagnóstico por imagen , Enfermedad de Parkinson/terapia , Enfermedad de Parkinson/fisiopatología , Enfermedad de Parkinson/diagnóstico por imagen , Monitorización Neurofisiológica Intraoperatoria/métodos
2.
J Mech Behav Biomed Mater ; 144: 105948, 2023 08.
Artículo en Inglés | MEDLINE | ID: mdl-37348171

RESUMEN

Only a few mandibular bone finite element (FE) models have been validated in literature, making it difficult to assess the credibility of the models. In a comparative study between FE models and biomechanical experiments using a synthetic polyamide 12 (PA12) mandible model, we investigate how material properties and boundary conditions affect the FE model's accuracy using the design of experiments approach. Multiple FE parameters, such as contact definitions and the materials' elastic and plastic deformation characteristics, were systematically analyzed for an intact mandibular model and transferred to the fracture fixation model. In a second step, the contact definitions for the titanium screw and implant (S-I), implant and PA12 mandible (I-M), and interfragmentary (IF) PA12 segments were optimized. Comparing simulated deformations (from 0 to -5 mm) and reaction forces (from 10 to 1'415 N) with experimental results showed a strong sensitivity to FE mechanical properties and contact definitions. The results suggest that using the bonded definition for the screw-implant contact of the fracture plate is ineffective. The contact friction parameter set with the highest agreement was identified: titanium screw and implant µ = 0.2, implant and PA12 mandible µ = 0.2, interfragmentary PA12 mandible µ = 0.1. The simulated reaction force (RMSE = 26.60 N) and surface displacement data (RMSE = 0.19 mm) of the FE analysis showed a strong agreement with the experimental biomechanical data. The results were generated through parameter optimization which means that our findings need to be validated in the event of a new dataset with deviating anatomy. Conclusively, the predictive capability of the FE model can be improved by FE model calibration through experimental testing. Validated preoperative quasi-static FE analysis could allow engineers and surgeons to accurately estimate how the implant's choice and placement suit the patient's biomechanical needs.


Asunto(s)
Fracturas Mandibulares , Humanos , Fracturas Mandibulares/cirugía , Análisis de Elementos Finitos , Titanio , Fijación Interna de Fracturas/métodos , Fenómenos Biomecánicos , Mandíbula , Placas Óseas , Estrés Mecánico
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA