Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 153
Filtrar
1.
Front Endocrinol (Lausanne) ; 15: 1412182, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39145315

RESUMEN

It is well established that high-protein diets (i.e. ~25-30% of energy intake from protein) provide benefits for achieving weight loss, and subsequent weight maintenance, in individuals with obesity, and improve glycemic control in type 2 diabetes (T2D). These effects may be attributable to the superior satiating property of protein, at least in part, through stimulation of both gastrointestinal (GI) mechanisms by protein, involving GI hormone release and slowing of gastric emptying, as well as post-absorptive mechanisms facilitated by circulating amino acids. In contrast, there is evidence that the beneficial effects of greater protein intake on body weight and glycemia may only be sustained for 6-12 months. While both suboptimal dietary compliance and metabolic adaptation, as well as substantial limitations in the design of longer-term studies are all likely to contribute to this contradiction, the source of dietary protein (i.e. animal vs. plant) has received inappropriately little attention. This issue has been highlighted by outcomes of recent epidemiological studies indicating that long-term consumption of animal-based protein may have adverse effects in relation to the development of obesity and T2D, while plant-based protein showed either protective or neutral effects. This review examines information relating to the effects of dietary protein on appetite, energy intake and postprandial glycemia, and the relevant GI functions, as reported in acute, intermediate- and long-term studies in humans. We also evaluate knowledge relating to the relevance of the dietary protein source, specifically animal or plant, to the prevention, and management, of obesity and T2D.


Asunto(s)
Diabetes Mellitus Tipo 2 , Control Glucémico , Obesidad , Diabetes Mellitus Tipo 2/metabolismo , Diabetes Mellitus Tipo 2/dietoterapia , Humanos , Obesidad/metabolismo , Control Glucémico/métodos , Animales , Peso Corporal , Proteínas Dietéticas Animales/administración & dosificación , Proteínas de Vegetales Comestibles/administración & dosificación , Glucemia/metabolismo , Ingestión de Energía , Proteínas en la Dieta/administración & dosificación
2.
Am J Clin Nutr ; 120(3): 528-539, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-38996913

RESUMEN

BACKGROUND: In humans, intraduodenal infusion of L-tryptophan (Trp) increases plasma concentrations of gastrointestinal hormones and stimulates pyloric pressures, both key determinants of gastric emptying and associated with potent suppression of energy intake. The stimulation of gastrointestinal hormones by Trp has been shown, in preclinical studies, to be enhanced by extracellular calcium and mediated in part by the calcium-sensing receptor. OBJECTIVES: This study aim was to determine whether intraduodenal calcium can enhance the effects of Trp to stimulate gastrointestinal hormones and pyloric pressures and, if so, whether it is associated with greater suppression of energy intake, in healthy males. METHODS: Fifteen males with normal weight (mean ± standard deviation; age: 26 ± 7 years; body mass index: 22 ± 2 kg/m2), received on 3 separate occasions, 150-min intraduodenal infusions of 0, 500, or 1000 mg calcium (Ca), each combined with Trp (load: 0.1 kcal/min, with submaximal energy intake-suppressant effects) from t = 75-150 min, in a randomized, double-blind, crossover study. Plasma concentrations of GI hormones [gastrin, cholecystokinin, glucose-dependent insulinotropic polypeptide (GIP), glucagon-like peptide (GLP)-1, and peptide tyrosine-tyrosine (PYY)], and Trp and antropyloroduodenal pressures were measured throughout. Immediately postinfusions (t = 150-180 min), energy intake at a standardized buffet-style meal was quantified. RESULTS: In response to calcium alone, both 500- and 1000-mg doses stimulated PYY, while only the 1000-mg dose stimulated GLP-1 and pyloric pressures (all P < 0.05). The 1000-mg dose also enhanced the effects of Trp to stimulate cholecystokinin and GLP-1, and both doses stimulated PYY but, surprisingly, reduced the stimulation of GIP (all P < 0.05). Both doses substantially and dose dependently enhanced the effects of Trp to suppress energy intake (Ca-0+Trp: 1108 ± 70 kcal; Ca-500+Trp: 961 ± 90 kcal; and Ca-1000+Trp: 922 ± 96 kcal; P < 0.05). CONCLUSIONS: Intraduodenal administration of calcium enhances the effect of Trp to stimulate plasma cholecystokinin, GLP-1, and PYY and suppress energy intake in healthy males. These findings have potential implications for novel nutrient-based approaches to energy intake regulation in obesity. The trial was registered at the Australian New Zealand Clinical Trial Registry (www.anzctr.org.au) as ACTRN12620001294943).


Asunto(s)
Estudios Cruzados , Duodeno , Ingestión de Energía , Hormonas Gastrointestinales , Triptófano , Humanos , Masculino , Adulto , Ingestión de Energía/efectos de los fármacos , Hormonas Gastrointestinales/sangre , Hormonas Gastrointestinales/metabolismo , Triptófano/farmacología , Triptófano/administración & dosificación , Triptófano/sangre , Duodeno/metabolismo , Duodeno/efectos de los fármacos , Adulto Joven , Método Doble Ciego , Calcio/sangre , Péptido 1 Similar al Glucagón/sangre , Vaciamiento Gástrico/efectos de los fármacos , Colecistoquinina/sangre , Péptido YY/sangre
3.
Clin Nutr ; 43(8): 1941-1955, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-39032197

RESUMEN

BACKGROUND AND AIMS: While clinical studies indicate that dietary protein may benefit glucose homeostasis in type 2 diabetes (T2D), the impact of dietary protein, including whether the protein is of animal or plant origin, on the risk of T2D is uncertain. We conducted a systematic review and meta-analysis to evaluate the associations of total, animal, and plant protein intakes with the risk of T2D. METHODS: A systematic search was performed using multiple data sources, including PubMed/Medline, ISI Web of Science, Scopus, and Google Scholar, with the data cut-off in May 2023. Our selection criteria focused on prospective cohort studies that reported risk estimates for the association between protein intake and T2D risk. For data synthesis, we calculated summary relative risks and 95% confidence intervals for the highest versus lowest categories of protein intake using random-effects models. Furthermore, we conducted both linear and non-linear dose-response analyses to assess the dose-response associations between protein intake and T2D risk. RESULTS: Sixteen prospective cohort studies, involving 615,125 participants and 52,342 T2D cases, were identified, of which eleven studies reported data on intake of both animal and plant protein. Intakes of total (pooled effect size: 1.14, 95% CI: 1.04-1.24) and animal (pooled effect size: 1.18, 95% CI: 1.09-1.27) protein were associated with an increased risk of T2D. These effects were dose-related - each 20-g increase in total or animal protein intake increased the risk of T2D by ∼3% and ∼7%, respectively. In contrast, there was no association between intake of plant protein and T2D risk (pooled effect size: 0.98, 95% CI: 0.89-1.08), while replacing animal with plant protein intake (per each 20 g) was associated with a reduced risk of T2D (pooled effect size: 0.80, 95% CI: 0.76-0.84). CONCLUSIONS: Our findings indicate that long-term consumption of animal, but not plant, protein is associated with a significant and dose-dependent increase in the risk of T2D, with the implication that replacement of animal with plant protein intake may lower the risk of T2D.


Asunto(s)
Proteínas Dietéticas Animales , Diabetes Mellitus Tipo 2 , Adulto , Femenino , Humanos , Masculino , Proteínas Dietéticas Animales/administración & dosificación , Diabetes Mellitus Tipo 2/epidemiología , Dieta/estadística & datos numéricos , Dieta/métodos , Proteínas en la Dieta/administración & dosificación , Proteínas de Vegetales Comestibles/administración & dosificación , Estudios Prospectivos , Factores de Riesgo
4.
Neurogastroenterol Motil ; : e14755, 2024 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-38303121

RESUMEN

BACKGROUND: The herbal preparation, STW5-II, improves upper gastrointestinal symptoms, including abdominal fullness, early satiation, and epigastric pain, in patients with functional dyspepsia, and in preclinical models decreases fundic tone and increases antral contractility. The effects of STW5-II on esophago-gastric junction pressure, proximal gastric tone and antropyloroduodenal pressures, disturbances of which may contribute to symptoms associated with disorders of gut-brain interaction, including functional dyspepsia, in humans, have, hitherto, not been evaluated. METHODS: STW5-II or placebo (matched for color, aroma, and alcohol content) were each administered orally, at the recommended dose (20 drops), to healthy male and female volunteers (age: 27 ± 1 years) in a double-blind, randomized fashion, on two separate occasions, separated by 3-7 days, to evaluate effects on (i) esophago-gastric junction pressures following a standardized meal using solid-state high-resolution manometry (part 1, n = 16), (ii) proximal gastric volume using a barostat (part 2, n = 16), and (iii) antropyloroduodenal pressures assessed by high-resolution manometry (part 3, n = 18), for 120 min (part 1) or 180 min (parts 2, 3). KEY RESULTS: STW5-II increased maximum intrabag volume (ml; STW5-II: 340 ± 38, placebo: 251 ± 30; p = 0.007) and intrabag volume between t = 120 and 180 min (p = 0.011), and the motility index of antral pressure waves between t = 60 and 120 min (p = 0.032), but had no effect on esophago-gastric junction, pyloric, or duodenal pressures. CONCLUSIONS & INFERENCES: STW5-II has marked region-specific effects on gastric motility in humans, which may contribute to its therapeutic efficacy in functional dyspepsia.

5.
Nutrients ; 15(16)2023 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-37630774

RESUMEN

Intraduodenal quinine, in the dose of 600 mg, stimulates glucagon-like peptide-1 (GLP-1), cholecystokinin and insulin; slows gastric emptying (GE); and lowers post-meal glucose in men. Oral sensitivity to bitter substances may be greater in women than men. We, accordingly, evaluated the dose-related effects of quinine on GE, and the glycaemic responses to, a mixed-nutrient drink in females, and compared the effects of the higher dose with those in males. A total of 13 female and 13 male healthy volunteers received quinine-hydrochloride (600 mg ('QHCl-600') or 300 mg ('QHCl-300', females only) or control ('C'), intraduodenally (10 mL bolus) 30 min before a drink (500 kcal, 74 g carbohydrates). Plasma glucose, insulin, C-peptide, GLP-1, glucose-dependent insulinotropic polypeptide (GIP) and cholecystokinin were measured at baseline, for 30 min after quinine alone, and then for 2 h post-drink. GE was measured by 13C-acetate breath-test. QHCl-600 alone stimulated insulin, C-peptide and GLP-1 secretion compared to C. Post-drink, QHCl-600 reduced plasma glucose, stimulated C-peptide and GLP-1, and increased the C-peptide/glucose ratio and oral disposition index, while cholecystokinin and GIP were less, in females and males. QHCl-600 also slowed GE compared to C in males and compared to QHCl-300 in females (p < 0.05). QHCl-300 reduced post-meal glucose concentrations and increased the C-peptide/glucose ratio, compared to C (p < 0.05). Magnitudes of glucose lowering and increase in C-peptide/glucose ratio by QHCl-600 were greater in females than males (p < 0.05). We conclude that quinine modulates glucoregulatory functions, associated with glucose lowering in healthy males and females. However, glucose lowering appears to be greater in females than males, without apparent differential effects on GI functions.


Asunto(s)
Vaciamiento Gástrico , Quinina , Humanos , Femenino , Masculino , Quinina/farmacología , Glucemia , Péptido C , Nutrientes , Insulina , Glucosa , Colecistoquinina , Polipéptido Inhibidor Gástrico , Péptido 1 Similar al Glucagón
6.
Nat Med ; 29(4): 963-972, 2023 04.
Artículo en Inglés | MEDLINE | ID: mdl-37024596

RESUMEN

Intermittent fasting appears an equivalent alternative to calorie restriction (CR) to improve health in humans. However, few trials have considered applying meal timing during the 'fasting' day, which may be a limitation. We developed a novel intermittent fasting plus early time-restricted eating (iTRE) approach. Adults (N = 209, 58 ± 10 years, 34.8 ± 4.7 kg m-2) at increased risk of developing type 2 diabetes were randomized to one of three groups (2:2:1): iTRE (30% energy requirements between 0800 and 1200 hours and followed by a 20-h fasting period on three nonconsecutive days per week, and ad libitum eating on other days); CR (70% of energy requirements daily, without time prescription); or standard care (weight loss booklet). This open-label, parallel group, three-arm randomized controlled trial provided nutritional support to participants in the iTRE and CR arms for 6 months, with an additional 12-month follow-up. The primary outcome was change in glucose area under the curve in response to a mixed-meal tolerance test at month 6 in iTRE versus CR. Glucose tolerance was improved to a greater extent in iTRE compared with CR (-10.10 (95% confidence interval -14.08, -6.11) versus -3.57 (95% confidence interval -7.72, 0.57) mg dl-1 min-1; P = 0.03) at month 6, but these differences were lost at month 18. Adverse events were transient and generally mild. Reports of fatigue were higher in iTRE versus CR and standard care, whereas reports of constipation and headache were higher in iTRE and CR versus standard care. In conclusion, incorporating advice for meal timing with prolonged fasting led to greater improvements in postprandial glucose metabolism in adults at increased risk of developing type 2 diabetes. ClinicalTrials.gov identifier NCT03689608 .


Asunto(s)
Restricción Calórica , Diabetes Mellitus Tipo 2 , Humanos , Adulto , Ayuno Intermitente , Ayuno , Glucosa
7.
Diabetes Obes Metab ; 25(7): 1849-1854, 2023 07.
Artículo en Inglés | MEDLINE | ID: mdl-36864654

RESUMEN

AIM: To evaluate the effect of gastric distension, induced using a gastric 'barostat', on the secretion of glucose-dependent insulinotropic polypeptide (GIP) and glucagon-like peptide-1 (GLP-1) in the presence and absence of small intestinal nutrients in healthy individuals. MATERIALS AND METHODS: Eight healthy participants (two females, six males, mean age 69.3 ± 1.2 years, body mass index 23.5 ± 0.8 kg/m2 ) were each studied on four occasions when they received an intraduodenal infusion of either (i) 0.9% saline or (ii) glucose delivered at a rate of 3 kcal/min both with, and without, an intragastric balloon with the pressure set to 8 mmHg above the intragastric minimum distending pressure. RESULTS: Following intraduodenal saline or glucose infusion, there was no difference in plasma GLP-1 with or without gastric distension (P = 1.00 for both saline and glucose infusions). There was also no difference in plasma GIP with or without gastric distension (P = 1.00 for saline infusion and P = .99 for glucose infusion). CONCLUSIONS: Gastric distension, either alone or during small intestinal glucose exposure, does not stimulate incretin hormone secretion significantly in healthy humans.


Asunto(s)
Balón Gástrico , Glucosa , Masculino , Femenino , Humanos , Anciano , Incretinas , Estudios Cruzados , Glucemia , Solución Salina , Polipéptido Inhibidor Gástrico , Péptido 1 Similar al Glucagón , Insulina
8.
Appetite ; 184: 106490, 2023 05 01.
Artículo en Inglés | MEDLINE | ID: mdl-36781111

RESUMEN

Gastrointestinal functions, particularly pyloric motility and the gut hormones, cholecystokinin and peptide YY, contribute to the regulation of acute energy intake. Bitter tastants modulate these functions, but may, in higher doses, induce GI symptoms. The aim of this study was to evaluate the effects of both dose and delivery location of a bitter hop extract (BHE) on antropyloroduodenal pressures, plasma cholecystokinin and peptide YY, appetite perceptions, gastrointestinal symptoms and energy intake in healthy-weight men. The study consisted of two consecutive parts, with part A including n = 15, and part B n = 11, healthy, lean men (BMI 22.6 ± 1.1 kg/m2, aged 25 ± 3 years). In randomised, double-blind fashion, participants received in part A, BHE in doses of either 100 mg ("ID-BHE-100") or 250 mg ("ID-BHE-250"), or vehicle (canola oil; "ID-control") intraduodenally, or in part B, 250 mg BHE ("IG-BHE-250") or vehicle ("IG-control") intragastrically. Antropyloroduodenal pressures, hormones, appetite and symptoms were measured for 180 min, energy intake from a standardised buffet-meal was quantified subsequently. ID-BHE-250, but not ID-BHE-100, had modest, and transient, effects to stimulate pyloric pressures during the first 90 min (P < 0.05), and peptide YY from t = 60 min (P < 0.05), but did not affect antral or duodenal pressures, cholecystokinin, appetite, gastrointestinal symptoms or energy intake. IG-BHE-250 had no detectable effects. In conclusion, BHE, when administered intraduodenally, in the selected higher dose, modestly affected some appetite-related gastrointestinal functions, but had no detectable effects when given in the lower dose or intragastrically. Thus, BHE, at none of the doses or routes of administration tested, has appetite- or energy intake-suppressant effects.


Asunto(s)
Hormonas Gastrointestinales , Humulus , Masculino , Humanos , Péptido YY , Motilidad Gastrointestinal/fisiología , Ingestión de Energía/fisiología , Colecistoquinina , Apetito/fisiología , Disgeusia , Método Doble Ciego
9.
Nutrients ; 14(13)2022 Jun 22.
Artículo en Inglés | MEDLINE | ID: mdl-35807757

RESUMEN

(1) Background: Limited evidence from laboratory-based studies suggests that specific dietary macronutrients, particularly fat, can induce dyspeptic symptoms. Through a population-based study, we investigated the relationship between dietary macronutrients and dyspeptic symptoms and sought to determine macronutrient intake thresholds to predict or prevent dyspepsia and reduce symptoms in patients with dyspepsia. (2) Methods: A total of 4763 Iranian people were enrolled in this population-based, cross-sectional study. Uninvestigated dyspepsia (UD) and its symptoms, including postprandial fullness, early satiation, and epigastric pain, were evaluated using a modified Persian version of the Rome III criteria. The dietary intakes of participants were evaluated using a validated food−frequency questionnaire. Receiver operating characteristic (ROC) curve analysis was used to calculate threshold intakes of dietary macronutrients to prevent UD in the general population. The analysis was then repeated in those with UD to calculate intake thresholds for reducing UD symptoms. (3) Results: Early satiation occurred in 6.3% (n = 302), postprandial fullness in 8.0% (n = 384) and epigastric pain in 7.8% (n = 371) of participants. The prevalence of UD was 15.2%. Compared with individuals without UD, those with UD had a lower intake of carbohydrates (48.2% vs. 49.1%) and a higher intake of fats (38.3% vs. 37.4%), while protein and energy intakes did not differ. Higher dietary fat and protein intakes were associated with a higher prevalence of postprandial fullness and epigastric pain, respectively. Macronutrient intakes to predict UD in the general population were <49% of energy from carbohydrates, >14.7% from protein, and >37.7% from fats. Carbohydrate, protein, and fat intakes to prevent symptoms among those with UD were calculated to be >48.2%, <14.6%, and <38.6%, respectively. (4) Conclusion: Higher carbohydrate intake and lower fat or protein intakes were associated with a lower likelihood of UD. Prospective studies carefully manipulating dietary macronutrient composition are warranted to investigate the value of dietary changes to improve symptoms in people with UD.


Asunto(s)
Dispepsia , Dolor Abdominal/epidemiología , Dolor Abdominal/etiología , Carbohidratos , Estudios Transversales , Carbohidratos de la Dieta , Grasas de la Dieta , Proteínas en la Dieta , Dispepsia/epidemiología , Dispepsia/etiología , Ingestión de Alimentos , Ingestión de Energía , Humanos , Irán/epidemiología , Nutrientes , Estudios Prospectivos
10.
J Clin Endocrinol Metab ; 107(7): e2870-e2881, 2022 06 16.
Artículo en Inglés | MEDLINE | ID: mdl-35325161

RESUMEN

CONTEXT: The bitter substance quinine modulates the release of a number of gut and gluco-regulatory hormones and upper gut motility. As the density of bitter receptors may be higher in the duodenum than the stomach, direct delivery to the duodenum may be more potent in stimulating these functions. The gastrointestinal responses to bitter compounds may also be modified by sex. BACKGROUND: We have characterized the effects of intragastric (IG) versus intraduodenal (ID) administration of quinine hydrochloride (QHCl) on gut and pancreatic hormones and antropyloroduodenal pressures in healthy men and women. METHODS: 14 men (26 ±â€…2 years, BMI: 22.2 ±â€…0.5 kg/m2) and 14 women (28 ±â€…2 years, BMI: 22.5 ±â€…0.5 kg/m2) received 600 mg QHCl on 2 separate occasions, IG or ID as a 10-mL bolus, in randomized, double-blind fashion. Plasma ghrelin, cholecystokinin, peptide YY, glucagon-like peptide-1 (GLP-1), insulin, glucagon, and glucose concentrations and antropyloroduodenal pressures were measured at baseline and for 120 minutes following QHCl. RESULTS: Suppression of ghrelin (P = 0.006), stimulation of cholecystokinin (P = 0.030), peptide YY (P = 0.017), GLP-1 (P = 0.034), insulin (P = 0.024), glucagon (P = 0.030), and pyloric pressures (P = 0.050), and lowering of glucose (P = 0.001) were greater after ID-QHCl than IG-QHCl. Insulin stimulation (P = 0.021) and glucose reduction (P = 0.001) were greater in females than males, while no sex-associated effects were found for cholecystokinin, peptide YY, GLP-1, glucagon, or pyloric pressures. CONCLUSION: ID quinine has greater effects on plasma gut and pancreatic hormones and pyloric pressures than IG quinine in healthy subjects, consistent with the concept that stimulation of small intestinal bitter receptors is critical to these responses. Both insulin stimulation and glucose lowering were sex-dependent.


Asunto(s)
Ghrelina , Quinina , Colecistoquinina , Método Doble Ciego , Ingestión de Energía , Femenino , Motilidad Gastrointestinal , Glucagón , Péptido 1 Similar al Glucagón , Glucosa , Humanos , Insulina , Masculino , Hormonas Pancreáticas , Péptido YY , Quinina/farmacología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...