Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 26
Filtrar
Más filtros













Base de datos
Intervalo de año de publicación
1.
Endocrinology ; 165(4)2024 Feb 20.
Artículo en Inglés | MEDLINE | ID: mdl-38325289

RESUMEN

The mineralocorticoid receptor (MR) is a transcription factor for genes mediating diverse, cell-specific functions, including trophic effects as well as promoting fluid/electrolyte homeostasis. It was reported that in intercalated cells, phosphorylation of the MR at serine 843 (S843) by Unc-51-like kinase (ULK1) inhibits MR activation and that phosphorylation of ULK1 by mechanistic target of rapamycin (mTOR) inactivates ULK1, and thereby prevents MR inactivation. We extended these findings with studies in M1 mouse cortical collecting duct cells stably expressing the rat MR and a reporter gene. Pharmacological inhibition of ULK1 dose-dependently increased ligand-induced MR transactivation, while ULK1 activation had no effect. Pharmacological inhibition of mTOR and CRISPR/gRNA gene knockdown of rapamycin-sensitive adapter protein of mTOR (Raptor) or rapamycin-insensitive companion of mTOR (Rictor) decreased phosphorylated ULK1 and ligand-induced activation of the MR reporter gene, as well as transcription of endogenous MR-target genes. As predicted, ULK1 inhibition had no effect on aldosterone-mediated transcription in M1 cells with the mutated MR-S843A (alanine cannot be phosphorylated). In contrast, mTOR inhibition dose-dependently decreased transcription in the MR-S843A cells, though not as completely as in cells with the wild-type MR-S843. mTOR, Raptor, and Rictor coprecipitated with the MR and addition of aldosterone increased their phosphorylated, active state. These results suggest that mTOR significantly regulates MR activity in at least 2 ways: by suppressing MR inactivation by ULK1, and by a yet ill-defined mechanism that involves direct association with MR. They also provide new insights into the diverse functions of ULK1 and mTOR, 2 key enzymes that monitor the cell's energy status.


Asunto(s)
Aldosterona , Receptores de Mineralocorticoides , Animales , Ratones , Ratas , Homólogo de la Proteína 1 Relacionada con la Autofagia/genética , Homólogo de la Proteína 1 Relacionada con la Autofagia/metabolismo , Ligandos , Diana Mecanicista del Complejo 1 de la Rapamicina/metabolismo , Complejos Multiproteicos/metabolismo , Fosforilación , Proteína Asociada al mTOR Insensible a la Rapamicina/metabolismo , Receptores de Mineralocorticoides/genética , Receptores de Mineralocorticoides/metabolismo , Proteína Reguladora Asociada a mTOR , ARN Guía de Sistemas CRISPR-Cas , Sirolimus/farmacología , Serina-Treonina Quinasas TOR/metabolismo , Factores de Transcripción/metabolismo
2.
Cell Rep ; 37(1): 109785, 2021 10 05.
Artículo en Inglés | MEDLINE | ID: mdl-34610303

RESUMEN

A hallmark of type 2 diabetes (T2D) is hepatic resistance to insulin's glucose-lowering effects. The serum- and glucocorticoid-regulated family of protein kinases (SGK) is activated downstream of mechanistic target of rapamycin complex 2 (mTORC2) in response to insulin in parallel to AKT. Surprisingly, despite an identical substrate recognition motif to AKT, which drives insulin sensitivity, pathological accumulation of SGK1 drives insulin resistance. Liver-specific Sgk1-knockout (Sgk1Lko) mice display improved glucose tolerance and insulin sensitivity and are protected from hepatic steatosis when fed a high-fat diet. Sgk1 promotes insulin resistance by inactivating AMP-activated protein kinase (AMPK) via phosphorylation on inhibitory site AMPKαSer485/491. We demonstrate that SGK1 is dominant among SGK family kinases in regulation of insulin sensitivity, as Sgk1, Sgk2, and Sgk3 triple-knockout mice have similar increases in hepatic insulin sensitivity. In aggregate, these data suggest that targeting hepatic SGK1 may have therapeutic potential in T2D.


Asunto(s)
Proteínas Quinasas Activadas por AMP/metabolismo , Proteínas Inmediatas-Precoces/metabolismo , Hígado/metabolismo , Proteínas Serina-Treonina Quinasas/metabolismo , Proteínas Quinasas Activadas por AMP/antagonistas & inhibidores , Animales , Diabetes Mellitus Tipo 2/patología , Dieta Alta en Grasa , Proteína Forkhead Box O1/metabolismo , Glucosa/metabolismo , Proteínas Inmediatas-Precoces/deficiencia , Proteínas Inmediatas-Precoces/genética , Insulina/metabolismo , Resistencia a la Insulina , Diana Mecanicista del Complejo 2 de la Rapamicina/metabolismo , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Fosforilación , Proteínas Serina-Treonina Quinasas/deficiencia , Proteínas Serina-Treonina Quinasas/genética , Proteínas Proto-Oncogénicas c-akt/metabolismo , ARN Guía de Kinetoplastida/metabolismo , Transducción de Señal
3.
Sci Rep ; 10(1): 14751, 2020 09 08.
Artículo en Inglés | MEDLINE | ID: mdl-32901079

RESUMEN

Drugs of abuse cause significant neuroadaptations within the ventral tegmental area (VTA), with alterations in gene expression tied to changes in reward behavior. Serum- and glucocorticoid-inducible kinase 1 (SGK1) transcription, catalytic activity, and phosphorylation are upregulated in the VTA by chronic cocaine or morphine treatment, positioning SGK1 as a critical mediator of reward behavior. Using transgenic mouse models, we investigated the effect of SGK1 knockout in the VTA and in dopamine (DA) neurons to evaluate the necessity of protein expression for natural and drug reward behaviors. SGK1 knockdown in the VTA did not impact reward behaviors. Given VTA cellular heterogeneity, we also investigated a DA neuron-specific SGK1 knockout (KO). DA SGK1 KO significantly decreased body weight of adult mice as well as increased general locomotor activity; however, reward behaviors were similarly unaltered. Given that SGK1 mutants virally overexpressed in the VTA are capable of altering drug-associated behavior, our current results suggest that changes in SGK1 protein signaling may be distinct from expression. This work yields novel information on the impact of SGK1 deletion, critical for understanding the role of SGK1 signaling in the central nervous system and evaluating SGK1 as a potential therapeutic target for treatment of substance use disorders.


Asunto(s)
Conducta Animal/efectos de los fármacos , Cocaína/farmacología , Neuronas Dopaminérgicas/efectos de los fármacos , Proteínas Inmediatas-Precoces/fisiología , Proteínas Serina-Treonina Quinasas/fisiología , Recompensa , Área Tegmental Ventral/efectos de los fármacos , Animales , Inhibidores de Captación de Dopamina/farmacología , Neuronas Dopaminérgicas/patología , Femenino , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Transducción de Señal , Área Tegmental Ventral/patología
4.
Cell ; 177(2): 299-314.e16, 2019 04 04.
Artículo en Inglés | MEDLINE | ID: mdl-30929899

RESUMEN

Autophagy is required in diverse paradigms of lifespan extension, leading to the prevailing notion that autophagy is beneficial for longevity. However, why autophagy is harmful in certain contexts remains unexplained. Here, we show that mitochondrial permeability defines the impact of autophagy on aging. Elevated autophagy unexpectedly shortens lifespan in C. elegans lacking serum/glucocorticoid regulated kinase-1 (sgk-1) because of increased mitochondrial permeability. In sgk-1 mutants, reducing levels of autophagy or mitochondrial permeability transition pore (mPTP) opening restores normal lifespan. Remarkably, low mitochondrial permeability is required across all paradigms examined of autophagy-dependent lifespan extension. Genetically induced mPTP opening blocks autophagy-dependent lifespan extension resulting from caloric restriction or loss of germline stem cells. Mitochondrial permeability similarly transforms autophagy into a destructive force in mammals, as liver-specific Sgk knockout mice demonstrate marked enhancement of hepatocyte autophagy, mPTP opening, and death with ischemia/reperfusion injury. Targeting mitochondrial permeability may maximize benefits of autophagy in aging.


Asunto(s)
Envejecimiento/metabolismo , Proteínas de Transporte de Membrana Mitocondrial/fisiología , Membranas Mitocondriales/fisiología , Animales , Autofagia/fisiología , Caenorhabditis elegans/metabolismo , Proteínas de Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/metabolismo , Proteínas de Caenorhabditis elegans/fisiología , Restricción Calórica , Células HEK293 , Humanos , Longevidad/fisiología , Masculino , Ratones , Ratones Noqueados , Mitocondrias , Proteínas de Transporte de Membrana Mitocondrial/metabolismo , Poro de Transición de la Permeabilidad Mitocondrial , Permeabilidad , Cultivo Primario de Células , Proteínas Serina-Treonina Quinasas/genética , Proteínas Serina-Treonina Quinasas/metabolismo , Proteínas Serina-Treonina Quinasas/fisiología , Daño por Reperfusión/metabolismo , Transducción de Señal
5.
J Cereb Blood Flow Metab ; 39(6): 1111-1121, 2019 06.
Artículo en Inglés | MEDLINE | ID: mdl-29260627

RESUMEN

Nitrones (e.g. α-phenyl-N-tert-butyl nitrone; PBN) are cerebroprotective in experimental stroke. Free radical trapping is their proposed mechanism. As PBN has low radical trapping potency, we tested Sgk1 induction as another possible mechanism. PBN was injected (100 mg/kg, i.p.) into adult male rats and mice. Sgk1 was quantified in cerebral tissue by microarray, quantitative RT-PCR and western analyses. Sgk1+/+ and Sgk1-/- mice were randomized to receive PBN or saline immediately following transient (60 min) occlusion of the middle cerebral artery. Neurological deficit was measured at 24 h and 48 h and infarct volume at 48 h post-occlusion. Following systemic PBN administration, rapid induction of Sgk1 was detected by microarray (at 4 h) and confirmed by RT-PCR and phosphorylation of the Sgk1-specific substrate NDRG1 (at 6 h). PBN-treated Sgk1+/+ mice had lower neurological deficit ( p < 0.01) and infarct volume ( p < 0.01) than saline-treated Sgk1+/+ mice. PBN-treated Sgk1-/- mice did not differ from saline-treated Sgk1-/- mice. Saline-treated Sgk1-/- and Sgk1+/+ mice did not differ. Brain Sgk3:Sgk1 mRNA ratio was 1.0:10.6 in Sgk1+/+ mice. Sgk3 was not augmented in Sgk1-/- mice. We conclude that acute systemic treatment with PBN induces Sgk1 in brain tissue. Sgk1 may play a part in PBN-dependent actions in acute brain ischemia.


Asunto(s)
Óxidos N-Cíclicos/uso terapéutico , Proteínas Inmediatas-Precoces/efectos de los fármacos , Proteínas Serina-Treonina Quinasas/efectos de los fármacos , Animales , Encéfalo/metabolismo , Isquemia Encefálica/tratamiento farmacológico , Óxidos N-Cíclicos/farmacología , Proteínas Inmediatas-Precoces/genética , Proteínas Inmediatas-Precoces/farmacología , Infarto de la Arteria Cerebral Media/tratamiento farmacológico , Masculino , Ratones , Ratones Noqueados , Óxidos de Nitrógeno/farmacología , Óxidos de Nitrógeno/uso terapéutico , Proteínas Serina-Treonina Quinasas/genética , Proteínas Serina-Treonina Quinasas/metabolismo , Proteínas Serina-Treonina Quinasas/farmacología , Ratas , Accidente Cerebrovascular/tratamiento farmacológico , Activación Transcripcional/efectos de los fármacos
6.
Diabetes ; 67(4): 569-580, 2018 04.
Artículo en Inglés | MEDLINE | ID: mdl-29321171

RESUMEN

Although the central nervous system has been implicated in glucocorticoid-induced gain of fat mass, the underlying mechanisms are poorly understood. The aim of this study was to investigate the possible involvement of hypothalamic serum- and glucocorticoid-regulated kinase 1 (SGK1) in glucocorticoid-increased adiposity. It is well known that SGK1 expression is induced by acute glucocorticoid treatment, but it is interesting that we found its expression to be decreased in the arcuate nucleus of the hypothalamus, including proopiomelanocortin (POMC) neurons, following chronic dexamethasone (Dex) treatment. To study the role of SGK1 in POMC neurons, we produced mice that developed or experienced adult-onset SGK1 deletion in POMC neurons (PSKO). As observed in Dex-treated mice, PSKO mice exhibited increased adiposity and decreased energy expenditure. Mice overexpressing constitutively active SGK1 in POMC neurons consistently had the opposite phenotype and did not experience Dex-increased adiposity. Finally, Dex decreased hypothalamic α-melanocyte-stimulating hormone (α-MSH) content and its precursor Pomc expression via SGK1/FOXO3 signaling, and intracerebroventricular injection of α-MSH or adenovirus-mediated FOXO3 knockdown in the arcuate nucleus largely reversed the metabolic alterations in PSKO mice. These results demonstrate that POMC SGK1/FOXO3 signaling mediates glucocorticoid-increased adiposity, providing new insights into the mechanistic link between glucocorticoids and fat accumulation and important hints for possible treatment targets for obesity.


Asunto(s)
Adiposidad/efectos de los fármacos , Dexametasona/farmacología , Proteína Forkhead Box O3/genética , Glucocorticoides/farmacología , Proteínas Inmediatas-Precoces/genética , Neuronas/efectos de los fármacos , Proopiomelanocortina/metabolismo , Proteínas Serina-Treonina Quinasas/genética , Adiposidad/genética , Animales , Núcleo Arqueado del Hipotálamo/efectos de los fármacos , Núcleo Arqueado del Hipotálamo/metabolismo , Metabolismo Energético/efectos de los fármacos , Proteína Forkhead Box O3/metabolismo , Hipotálamo/citología , Hipotálamo/efectos de los fármacos , Hipotálamo/metabolismo , Proteínas Inmediatas-Precoces/metabolismo , Masculino , Ratones , Neuronas/metabolismo , Proteínas Serina-Treonina Quinasas/metabolismo , alfa-MSH/efectos de los fármacos , alfa-MSH/metabolismo
7.
Neuron ; 96(1): 190-206.e7, 2017 Sep 27.
Artículo en Inglés | MEDLINE | ID: mdl-28957668

RESUMEN

Sodium deficiency increases angiotensin II (ATII) and aldosterone, which synergistically stimulate sodium retention and consumption. Recently, ATII-responsive neurons in the subfornical organ (SFO) and aldosterone-sensitive neurons in the nucleus of the solitary tract (NTSHSD2 neurons) were shown to drive sodium appetite. Here we investigate the basis for NTSHSD2 neuron activation, identify the circuit by which NTSHSD2 neurons drive appetite, and uncover an interaction between the NTSHSD2 circuit and ATII signaling. NTSHSD2 neurons respond to sodium deficiency with spontaneous pacemaker-like activity-the consequence of "cardiac" HCN and Nav1.5 channels. Remarkably, NTSHSD2 neurons are necessary for sodium appetite, and with concurrent ATII signaling their activity is sufficient to produce rapid consumption. Importantly, NTSHSD2 neurons stimulate appetite via projections to the vlBNST, which is also the effector site for ATII-responsive SFO neurons. The interaction between angiotensin signaling and NTSHSD2 neurons provides a neuronal context for the long-standing "synergy hypothesis" of sodium appetite regulation.


Asunto(s)
Aldosterona/fisiología , Angiotensina II/fisiología , Relojes Biológicos/fisiología , Neuronas/fisiología , Transducción de Señal , Sodio/fisiología , Núcleo Solitario/fisiología , Animales , Ingestión de Alimentos/fisiología , Canales Regulados por Nucleótidos Cíclicos Activados por Hiperpolarización/fisiología , Masculino , Ratones , Ratones Transgénicos , Canal de Sodio Activado por Voltaje NAV1.5/fisiología , Vías Nerviosas/fisiología , Núcleos Septales/fisiología , Sodio/deficiencia
8.
Endocrinology ; 158(7): 2367-2375, 2017 07 01.
Artículo en Inglés | MEDLINE | ID: mdl-28472300

RESUMEN

The mineralocorticoid receptor (MR) is a member of the steroid-thyroid hormone receptor superfamily of ligand-dependent transcription factors with diverse functions including the biological actions of aldosterone. Identification of the various transcriptional coregulators of MR is essential for understanding the complexity of MR signaling pathways under physiological and pathological conditions. We used a yeast two-hybrid system to find proteins that interact with a full-length MR and found, among other proteins, that MR interacted specifically with receptor for activated C kinase 1 (RACK1), a scaffolding protein. Overexpression of RACK1 using a tetracycline-inducible lentivirus in mouse cortical collecting duct M1 cells stably expressing the rat MR and a Gaussia luciferase gene reporter under a hormone-response element promoter resulted in enhanced agonist-dependent MR transactivation. Knockdown of RACK1 protein expression by short hairpin RNAs led to a significant reduction in MR activation of the reporter gene and the endogenous genes Ctla2α and Psca. We also demonstrated that RACK1 regulation of MR action is mediated through phosphorylation by the PKC-ß signaling pathway. MR and RACK1 were coimmunoprecipitated using an MR antibody in male Sprague-Dawley brain tissue and M1-rMR cells, and colocalization in M1-rMR cells and male rat brains was confirmed by immunofluorescence and immunohistochemistry. The scaffolding protein RACK1 is associated with MR under basal and agonist-stimulated conditions and facilitates agonist-stimulated MR actions through PKC-ß. These findings indicate that RACK1 is a newly described coactivator of MR.


Asunto(s)
Aldosterona/metabolismo , Proteínas de Unión al GTP/metabolismo , Receptores de Mineralocorticoides/metabolismo , Animales , Células Cultivadas , Proteínas de Unión al GTP/genética , Masculino , Regiones Promotoras Genéticas , Unión Proteica , Ratas , Ratas Sprague-Dawley , Receptores de Cinasa C Activada , Receptores de Mineralocorticoides/genética , Transducción de Señal/genética , Activación Transcripcional
9.
Arterioscler Thromb Vasc Biol ; 36(5): 874-85, 2016 05.
Artículo en Inglés | MEDLINE | ID: mdl-26966277

RESUMEN

OBJECTIVE: Restenosis after percutaneous coronary intervention remains to be a serious medical problem. Although mineralocorticoid receptor (MR) has been implicated as a potential target for treating restenosis, the cellular and molecular mechanisms are largely unknown. This study aims to explore the functions of macrophage MR in neointimal hyperplasia and to delineate the molecular mechanisms. APPROACH AND RESULTS: Myeloid MR knockout (MMRKO) mice and controls were subjected to femoral artery injury. MMRKO reduced intima area and intima/media ratio, Ki67- and BrdU-positive vascular smooth muscle cells, expression of proinflammatory molecules, and macrophage accumulation in injured arteries. MMRKO macrophages migrated less in culture. MMRKO decreased Ki67- and BrdU-positive macrophages in injured arteries. MMRKO macrophages were less Ki67-positive in culture. Conditioned media from MMRKO macrophages induced less migration, Ki67 positivity, and proinflammatory gene expression of vascular smooth muscle cells. After lipopolysaccharide treatment, MMRKO macrophages had decreased p-cFos and p-cJun compared with control macrophages, suggesting suppressed activation of activator protein-1 (AP1). Nuclear factor-κB (NF-κB) pathway was also inhibited by MMRKO, manifested by decreased p-IκB kinase-ß and p-IκBα, increased IκBα expression, decreased nuclear translocation of p65 and p50, as welll as decreased phosphorylation and expression of p65. Finally, overexpression of serum-and-glucocorticoid-inducible-kinase-1 (SGK1) attenuated the effects of MR deficiency in macrophages. CONCLUSIONS: Selective deletion of MR in myeloid cells limits macrophage accumulation and vascular inflammation and, therefore, inhibits neointimal hyperplasia and vascular remodeling. Mechanistically, MR deficiency suppresses migration and proliferation of macrophages and leads to less vascular smooth muscle cell activation. At the molecular level, MR deficiency suppresses macrophage inflammatory response via SGK1-AP1/NF-κB pathways.


Asunto(s)
Proteínas Inmediatas-Precoces/metabolismo , Inflamación/enzimología , Macrófagos/enzimología , Músculo Liso Vascular/enzimología , Miocitos del Músculo Liso/enzimología , FN-kappa B/metabolismo , Neointima , Proteínas Serina-Treonina Quinasas/metabolismo , Receptores de Mineralocorticoides/deficiencia , Factor de Transcripción AP-1/metabolismo , Lesiones del Sistema Vascular/enzimología , Animales , Movimiento Celular , Proliferación Celular , Técnicas de Cocultivo , Modelos Animales de Enfermedad , Arteria Femoral/enzimología , Arteria Femoral/lesiones , Arteria Femoral/metabolismo , Predisposición Genética a la Enfermedad , Hiperplasia , Proteínas Inmediatas-Precoces/genética , Inflamación/genética , Inflamación/patología , Inflamación/prevención & control , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Músculo Liso Vascular/lesiones , Músculo Liso Vascular/patología , Miocitos del Músculo Liso/patología , Comunicación Paracrina , Fenotipo , Proteínas Serina-Treonina Quinasas/genética , Células RAW 264.7 , Interferencia de ARN , Receptores de Mineralocorticoides/genética , Transducción de Señal , Factores de Tiempo , Transfección , Remodelación Vascular , Lesiones del Sistema Vascular/genética , Lesiones del Sistema Vascular/patología , Lesiones del Sistema Vascular/prevención & control
10.
Biochem J ; 464(2): 281-9, 2014 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-25222560

RESUMEN

Insulin resistance is a major hallmark of metabolic syndromes, including Type 2 diabetes. Although numerous functions of SGK1 (serum- and glucocorticoid-regulated kinase 1) have been identified, a direct effect of SGK1 on insulin sensitivity has not been previously reported. In the present study, we generated liver-specific SGK1-knockout mice and found that these mice developed glucose intolerance and insulin resistance. We also found that insulin signalling is enhanced or impaired in Hep1-6 cells infected with adenoviruses expressing SGK1 (Ad-SGK1) or shRNA directed against the coding region of SGK1 (Ad-shSGK1) respectively. In addition, we determined that SGK1 inhibits ERK1/2 (extracellular-signal-regulated kinase 1/2) activity in liver and Ad-shERK1/2-mediated inhibition of ERK1/2 reverses the attenuated insulin sensitivity in Ad-shSGK1 mice. Finally, we found that SGK1 functions are compromised under insulin-resistant conditions and overexpression of SGK1 by Ad-SGK1 significantly ameliorates insulin resistance in both glucosamine-treated HepG2 cells and livers of db/db mice, a genetic model of insulin resistance.


Asunto(s)
Diabetes Mellitus Tipo 2/metabolismo , Proteínas Inmediatas-Precoces/metabolismo , Resistencia a la Insulina , Insulina/metabolismo , Proteína Quinasa 3 Activada por Mitógenos/metabolismo , Proteínas Serina-Treonina Quinasas/metabolismo , Animales , Diabetes Mellitus Tipo 2/etiología , Diabetes Mellitus Tipo 2/patología , Intolerancia a la Glucosa , Células Hep G2 , Humanos , Proteínas Inmediatas-Precoces/química , Insulina/genética , Hígado/metabolismo , Hígado/patología , Ratones , Ratones Noqueados , Proteína Quinasa 3 Activada por Mitógenos/antagonistas & inhibidores , Proteínas Serina-Treonina Quinasas/química , Transducción de Señal/genética
11.
Nat Immunol ; 15(5): 457-64, 2014 May.
Artículo en Inglés | MEDLINE | ID: mdl-24705297

RESUMEN

SGK1 is an AGC kinase that regulates the expression of membrane sodium channels in renal tubular cells in a manner dependent on the metabolic checkpoint kinase complex mTORC2. We hypothesized that SGK1 might represent an additional mTORC2-dependent regulator of the differentiation and function of T cells. Here we found that after activation by mTORC2, SGK1 promoted T helper type 2 (TH2) differentiation by negatively regulating degradation of the transcription factor JunB mediated by the E3 ligase Nedd4-2. Simultaneously, SGK1 repressed the production of interferon-γ (IFN-γ) by controlling expression of the long isoform of the transcription factor TCF-1. Consistent with those findings, mice with selective deletion of SGK1 in T cells were resistant to experimentally induced asthma, generated substantial IFN-γ in response to viral infection and more readily rejected tumors.


Asunto(s)
Asma/inmunología , Proteínas Inmediatas-Precoces/metabolismo , Melanoma Experimental/inmunología , Complejos Multiproteicos/inmunología , Infecciones por Poxviridae/inmunología , Proteínas Serina-Treonina Quinasas/metabolismo , Serina-Treonina Quinasas TOR/inmunología , Células TH1/inmunología , Células Th2/inmunología , Virus Vaccinia/inmunología , Inmunidad Adaptativa/genética , Animales , Diferenciación Celular/genética , Células Cultivadas , Complejos de Clasificación Endosomal Requeridos para el Transporte/metabolismo , Regulación de la Expresión Génica/genética , Factor Nuclear 1-alfa del Hepatocito , Proteínas Inmediatas-Precoces/genética , Interferón gamma/genética , Interferón gamma/metabolismo , Diana Mecanicista del Complejo 2 de la Rapamicina , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Ubiquitina-Proteína Ligasas Nedd4 , Proteínas Serina-Treonina Quinasas/genética , Factor 1 de Transcripción de Linfocitos T/genética , Factor 1 de Transcripción de Linfocitos T/metabolismo , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , Carga Tumoral/genética , Ubiquitina-Proteína Ligasas/metabolismo
12.
Am J Physiol Renal Physiol ; 302(8): F977-85, 2012 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-22301619

RESUMEN

The expression of the serum- and glucocorticoid-regulated kinase 1 (Sgk1) is induced by mineralocorticoids and, in turn, upregulates the renal epithelial Na(+) channel (ENaC). Total inactivation of Sgk1 has been associated with transient urinary Na(+) wasting with a low-Na(+) diet, while the aldosterone-mediated ENaC channel activation was unchanged in the collecting duct. Since Sgk1 is ubiquitously expressed, we aimed to study the role of renal Sgk1 and generated an inducible kidney-specific knockout (KO) mouse. We took advantage of the previously described TetOn/CreLoxP system, in which rtTA is under the control of the Pax8 promotor, allowing inducible inactivation of the floxed Sgk1 allele in the renal tubules (Sgk1fl/fl/Pax8/LC1 mice). We found that under a standard Na(+) diet, renal water and Na(+)/K(+) excretion had a tendency to be higher in doxycycline-treated Sgk1 KO mice compared with control mice. The impaired ability of Sgk1 KO mice to retain Na(+) increased significantly with a low-salt diet despite higher plasma aldosterone levels. On a low-Na(+) diet, the Sgk1 KO mice were also hyperkaliuric and lost body weight. This phenotype was accompanied by a decrease in systolic and diastolic blood pressure. At the protein level, we observed a reduction in phosphorylation of the ubiquitin protein-ligase Nedd4-2 and a decrease in the expression of the Na(+)-Cl(-)-cotransporter (NCC) and to a lesser extent of ENaC.


Asunto(s)
Proteínas Inmediatas-Precoces/fisiología , Riñón/fisiología , Proteínas Serina-Treonina Quinasas/fisiología , Sodio/orina , Aldosterona/sangre , Animales , Presión Sanguínea/fisiología , Dieta Hiposódica , Complejos de Clasificación Endosomal Requeridos para el Transporte/metabolismo , Canales Epiteliales de Sodio/biosíntesis , Proteínas Inmediatas-Precoces/genética , Proteínas Inmediatas-Precoces/metabolismo , Riñón/metabolismo , Ratones , Ratones Noqueados , Ubiquitina-Proteína Ligasas Nedd4 , Fosforilación , Potasio/sangre , Potasio/orina , Proteínas Serina-Treonina Quinasas/genética , Proteínas Serina-Treonina Quinasas/metabolismo , Sodio/sangre , Simportadores del Cloruro de Sodio/biosíntesis , Cloruro de Sodio Dietético/metabolismo , Ubiquitina-Proteína Ligasas/metabolismo
13.
Mol Biol Cell ; 22(20): 3812-25, 2011 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-21865597

RESUMEN

Na(+)/H(+) exchanger 3 (NHE3) is the major Na(+) transporter in the intestine. Serum- and glucocorticoid-induced kinase (SGK) 1 interacts with NHE regulatory factor 2 (NHERF2) and mediates activation of NHE3 by dexamethasone (Dex) in cultured epithelial cells. In this study, we compared short-term regulation of NHE3 by Dex in SGK1-null and NHERF2-null mice. In comparison to wild-type mice, loss of SGK1 or NHERF2 significantly attenuated regulation of NHE3 by Dex but did not completely obliterate the effect. We show that transfection of SGK2 or SGK3 in PS120 cells resulted in robust activation of NHE3 by Dex. However, unlike SGK1 or SGK2, SGK3 rapidly activated NHE3 within 15 min of Dex treatment in both PS120 and Caco-2bbe cells. Immunofluorescence analysis showed that SGK3 colocalized with NHE3 in recycling endosomes, whereas SGK1 and SGK2 were diffusely distributed. Mutation of Arg-90 of SGK3 disrupted the endosomal localization of SGK3 and delayed NHE3 activation. Activation of SGK3 and NHE3 by Dex was dependent on phosphoinositide 3-kinase (PI3K) and phosphoinositide-dependent kinase 1 (PDK1), and Dex induced translocation of PDK1 to endosomes. Our study identifies SGK3 as a novel endosomal kinase that acutely regulates NHE3 in a PI3K-dependent mechanism.


Asunto(s)
Dexametasona/farmacología , Endosomas/efectos de los fármacos , Células Epiteliales/efectos de los fármacos , Regulación de la Expresión Génica , Proteínas Serina-Treonina Quinasas/metabolismo , Transducción de Señal/genética , Intercambiadores de Sodio-Hidrógeno/metabolismo , Sodio/metabolismo , Animales , Línea Celular , Endosomas/metabolismo , Células Epiteliales/citología , Células Epiteliales/metabolismo , Glucocorticoides/farmacología , Humanos , Proteínas Inmediatas-Precoces/genética , Proteínas Inmediatas-Precoces/metabolismo , Ratones , Ratones Noqueados , Fosfatidilinositol 3-Quinasas , Fosfoproteínas/genética , Fosfoproteínas/metabolismo , Plásmidos , Proteínas Serina-Treonina Quinasas/genética , Piruvato Deshidrogenasa Quinasa Acetil-Transferidora , Intercambiador 3 de Sodio-Hidrógeno , Intercambiadores de Sodio-Hidrógeno/genética , Transfección
14.
Endocrinology ; 151(9): 4467-76, 2010 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-20591974

RESUMEN

Excess mineralocorticoid signaling is deleterious for cardiovascular functions, as demonstrated by the beneficial effects of mineralocorticoid receptor (MR) antagonism on morbidity and mortality in patients with heart failure. However, the understanding of signaling pathways after MR activation in the heart remains limited. We performed transcriptomic analyses in the heart of double-transgenic mice with conditional, cardiomyocyte-specific, overexpression of the MR (MRcardio mice) or the glucocorticoid receptor (GR; GRcardio mice). Some of the genes induced in MRcardio mice were selected for comparative evaluation (real time PCR) in vivo in the heart of mice and ex vivo in the MR-expressing cardiomyocyte H9C2 cell line after aldosterone or corticosterone treatment. We demonstrate that chronic MR overexpression in the heart results in a limited number of induced (n = 24) and repressed (n = 22) genes compared with their control littermates. These genes are specifically modulated by MR because there is limited overlap (three induced, four repressed) with the genes that are regulated in the heart of GRcardio mice (compared with control mice: 70 induced, 73 repressed). Interestingly, some MR-induced genes that are up-regulated in vivo in mice are also induced by 24-h aldosterone treatment in H9C2 cells, such as plasminogen activator inhibitor 1 and Serpina-3 (alpha1-antichymotrypsin). The signaling pathways that are affected by long-term activation of MR may be of particular interest to design novel therapeutic targets in cardiac diseases.


Asunto(s)
Perfilación de la Expresión Génica , Miocitos Cardíacos/metabolismo , Receptores de Mineralocorticoides/fisiología , Transducción de Señal/fisiología , Aldosterona/farmacología , Animales , Western Blotting , Línea Celular , Corticosterona/farmacología , Doxiciclina/farmacología , Femenino , Expresión Génica/efectos de los fármacos , Masculino , Ratones , Ratones Transgénicos , Miocardio/metabolismo , Miocitos Cardíacos/citología , Análisis de Secuencia por Matrices de Oligonucleótidos , Embarazo , Ratas , Receptores de Mineralocorticoides/genética , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Serpinas/genética , Serpinas/metabolismo , Transducción de Señal/genética
15.
Mol Endocrinol ; 24(2): 370-80, 2010 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-19965929

RESUMEN

The serum and glucocorticoid-inducible kinase 1 (SGK1) is an inducible kinase the physiological function of which has been characterized primarily in the kidney. Here we show that SGK1 is expressed in white adipose tissue and that its levels are induced in the conversion of preadipocytes into fat cells. Adipocyte differentiation is significantly diminished via small interfering RNA inhibition of endogenous SGK1 expression, whereas ectopic expression of SGK1 in mesenchymal precursor cells promotes adipogenesis. The SGK1-mediated phenotypic effects on differentiation parallel changes in the mRNA levels for critical regulators and markers of adipogenesis, such as peroxisome proliferator-activated receptor gamma, CCAAT enhancer binding protein alpha, and fatty acid binding protein aP2. We demonstrate that SGK1 affects differentiation by direct phosphorylation of Foxo1, thereby changing its cellular localization from the nucleus to the cytosol. In addition we show that SGK1-/- cells are unable to relocalize Foxo1 to the cytosol in response to dexamethasone. Together these results show that SGK1 influences adipocyte differentiation by regulating Foxo1 phosphorylation and reveal a potentially important function for this kinase in the control of fat mass and function.


Asunto(s)
Adipocitos Blancos/metabolismo , Adipogénesis , Factores de Transcripción Forkhead/metabolismo , Glucocorticoides/farmacología , Proteínas Inmediatas-Precoces/metabolismo , Proteínas Serina-Treonina Quinasas/metabolismo , Células 3T3-L1 , Adipocitos Blancos/citología , Adipocitos Blancos/efectos de los fármacos , Adipogénesis/efectos de los fármacos , Adipogénesis/genética , Animales , Animales Modificados Genéticamente , Biomarcadores/metabolismo , Línea Celular , Células Cultivadas , Embrión de Mamíferos , Femenino , Fibroblastos , Proteína Forkhead Box O1 , Factores de Transcripción Forkhead/genética , Regulación Enzimológica de la Expresión Génica/efectos de los fármacos , Humanos , Proteínas Inmediatas-Precoces/antagonistas & inhibidores , Proteínas Inmediatas-Precoces/genética , Masculino , Ratones , Ratones Endogámicos C57BL , Especificidad de Órganos , Fosforilación/efectos de los fármacos , Proteínas Serina-Treonina Quinasas/antagonistas & inhibidores , Proteínas Serina-Treonina Quinasas/genética , Transporte de Proteínas/efectos de los fármacos , ARN Mensajero/metabolismo , ARN Interferente Pequeño
16.
Am J Physiol Renal Physiol ; 295(1): F18-26, 2008 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-18448589

RESUMEN

Aldosterone is the principal regulator of Na homeostasis, and thereby blood pressure. One of the main targets of aldosterone is the epithelial Na channel (ENaC) located in the apical membrane of target cells. Previous studies identified several genes involved in the regulation of ENaC such as SGK1; however, SGK1 knockout mice have only a mild salt-losing phenotype, indicating that further genes must be involved in the action of aldosterone. In our search for further aldosterone-regulated genes, we discovered that aldosterone, at physiological concentrations, induces the expression of the promyelocytic leukemia zinc finger protein (PLZF) in renal cortical collecting duct (CCD) cell lines that stably express mineralocorticoid receptors (MRs). This effect is rapid and does not require de novo protein synthesis, suggesting a direct action. Surprisingly, stable overexpression of human or mouse PLZF isoforms significantly decreased transepithelial Na transport in CCD cells while having no effect on the integrity of the monolayers. In parallel with the decline in Na transport, PLZF suppressed the mRNA levels of beta- and gamma-ENaC subunits. These observations suggest that PLZF is a negative regulator of ENaC in renal epithelial cells and might be part of a negative feedback loop that limits aldosterone's stimulatory effects on sodium reabsorption.


Asunto(s)
Aldosterona/fisiología , Canales Epiteliales de Sodio/fisiología , Factores de Transcripción de Tipo Kruppel/fisiología , Animales , Doxiciclina/farmacología , Canales Epiteliales de Sodio/efectos de los fármacos , Inhibidores de Histona Desacetilasas , Humanos , Ratones , Proteína de la Leucemia Promielocítica con Dedos de Zinc , ARN Mensajero/metabolismo , Ratas , Dedos de Zinc/fisiología , Factores de Transcripción p300-CBP/antagonistas & inhibidores
17.
Am J Physiol Renal Physiol ; 294(6): F1298-305, 2008 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-18385268

RESUMEN

Amiloride-sensitive Na(+) channel activity was examined in the cortical collecting ducts of a mouse line (SGK1(-/-)) deficient in the serum- and glucocorticoid-dependent protein kinase SGK1. This activity was correlated with changes in renal Na handling and in the maturation of epithelial Na(+) channel (ENaC) protein. Neither SGK1(-/-) mice nor paired SGK1(+/+) animals expressed detectable channel activity, measured as amiloride-sensitive whole-cell current (I(Na)), under control conditions with standard chow. Administration of aldosterone (0.5 microg/h via osmotic minipump for 7 days) increased I(Na) to a similar extent in SGK1(+/+) (378 +/- 61 pA/cell at -100 mV) and in SGK1(-/-) (350 +/- 57 pA/cell) animals. However, the maturation of ENaC, assessed as the ratio of cleaved to full-length forms of gamma-ENaC, was more pronounced in SGK(+/+) mice. The SGK1(-/-) animals exhibited a salt-wasting phenotype when kept on a low-Na diet for up to 2 days, losing significantly more Na in the urine than wild-type mice. Under these conditions, I(Na) was enhanced more in SGK1(-/-) (94 +/- 14 pA/cell) than in SGK(+/+) (23 +/- 5 pA/cell) genotypes. Despite the larger currents, the ratio of cleaved to full-length gamma-ENaC was lower in the knockout animals. The mice also expressed a smaller amount of Na(+)-Cl(-) cotransporter protein under Na-depleted conditions. These results indicated that SGK1 is essential for optimal processing of ENaC but is not required for activation of the channel by aldosterone.


Asunto(s)
Canales Epiteliales de Sodio/metabolismo , Hiperaldosteronismo/fisiopatología , Proteínas Inmediatas-Precoces/genética , Proteínas Inmediatas-Precoces/metabolismo , Túbulos Renales Colectores/metabolismo , Proteínas Serina-Treonina Quinasas/genética , Proteínas Serina-Treonina Quinasas/metabolismo , Sodio en la Dieta/farmacocinética , Aldosterona/metabolismo , Animales , Femenino , Heterocigoto , Homocigoto , Hiperaldosteronismo/genética , Hiperaldosteronismo/metabolismo , Masculino , Ratones , Ratones Endogámicos , Ratones Noqueados , Natriuresis/fisiología , Embarazo
18.
Am J Physiol Renal Physiol ; 293(3): F904-13, 2007 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-17609287

RESUMEN

The molecular mechanisms of aldosterone-regulated Na+ transport are not entirely clear. The goal of this study was to identify aldosterone-induced genes potentially involved in the trafficking of the epithelial Na+ channel (ENaC). We report that the transcript levels of melanophilin (MLPH), a protein involved in vesicular trafficking in melanocytes, are rapidly increased by aldosterone in cortical collecting duct (CCD) cells. This effect was near maximal at physiological aldosterone concentrations, indicating that it is mediated by the mineralocorticoid receptor. De novo protein synthesis is not required for the induction of MLPH mRNA by aldosterone. To determine whether this induction has functional consequences on transepithelial Na+ current, we generated clonal CCD cell lines that express a tetracycline-inducible MLPH. Induction of MLPH in these cells led to a relatively modest, but statistically significant, increase in amiloride-sensitive Na+ current, suggesting the MLPH may be involved in ENaC trafficking. MyosinVc, the epithelial-specific class V myosin that is highly homologous to MyosinVa, another component of the melanosome trafficking complex, has putative consensus sites for serum and glucocorticoid-induced kinase 1 (SGK1), an early aldosterone-induced kinase that mediates some of aldosterone's effects on Na+ transport. Our results indicate that MyosinVc is phosphorylated by endogenous SGK1, suggesting that this complex may be involved in the aldosterone-regulated trafficking of ENaC in the CCD. These results suggest potential mechanisms by which aldosterone may regulate Na+ transport both directly, by increasing the abundance of MLPH, and indirectly by increasing the transcription of SGK1, which in turn regulates the activity of MyosinVc.


Asunto(s)
Aldosterona/farmacología , Proteínas Portadoras/genética , Regulación de la Expresión Génica/efectos de los fármacos , Túbulos Renales Colectores/citología , Túbulos Renales Colectores/metabolismo , Proteínas Adaptadoras Transductoras de Señales , Animales , Proteínas Portadoras/metabolismo , Línea Celular , Ratones , ARN Mensajero/genética , ARN Mensajero/metabolismo
19.
Am J Physiol Cell Physiol ; 292(5): C1971-81, 2007 May.
Artículo en Inglés | MEDLINE | ID: mdl-17202226

RESUMEN

Serum- and glucocorticoid-induced kinase-1 (SGK1) is involved in aldosterone-induced Na(+) reabsorption by increasing epithelial Na(+) channel (ENaC) activity in cortical collecting duct (CCD) cells, but its exact mechanisms of action are unknown. Although several potential targets such as Nedd4-2 have been described in expression systems, endogenous substrates mediating SGK1's physiological effects remain to be identified. In addition, subcellular localization studies of SGK1 have provided controversial results. We determined the subcellular location of SGK1 using SGK1-autofluorescent protein (AFP) fusion proteins. Rabbit CCD (RCCT-28A) cells were transiently transfected with a construct encoding for SGK1-AFP and were stained or cotransfected with markers for various subcellular compartments. In live cells, transiently expressed SGK1-AFP clearly colocalized with the mitochondrial marker rhodamine 123. Similarly, SGK1-AFP colocalized with the mitochondrial marker MitoTracker when stably expressed using a retroviral system in either RCCT-28A cells or the mammary epithelial cell line MCF10A. To determine which region of SGK1 is responsible for this subcellular localization, we generated RCCT-28A cell lines stably expressing SGK1 mutants. The results indicate that the NH(2)-terminal 60-amino acid region of SGK1 is necessary and sufficient for its subcellular localization. Localization of SGK1 to the mitochondria raises the possibility that SGK1 may play a role in regulating energy metabolism.


Asunto(s)
Células Epiteliales/enzimología , Proteínas Inmediatas-Precoces/metabolismo , Túbulos Renales Colectores/enzimología , Glándulas Mamarias Humanas/enzimología , Mitocondrias/enzimología , Proteínas Serina-Treonina Quinasas/metabolismo , Animales , Línea Celular , Femenino , Proteínas Fluorescentes Verdes/genética , Humanos , Proteínas Inmediatas-Precoces/química , Proteínas Inmediatas-Precoces/genética , Túbulos Renales Colectores/citología , Glándulas Mamarias Humanas/citología , Ratones , Mutación , Proteínas Serina-Treonina Quinasas/química , Proteínas Serina-Treonina Quinasas/genética , Estructura Terciaria de Proteína , Conejos , Proteínas Recombinantes de Fusión/metabolismo , Transfección
20.
Endocrinology ; 148(4): 1502-10, 2007 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-17234708

RESUMEN

Recent clinical studies demonstrated beneficial effects of mineralocorticoid receptor (MR) antagonists in patients with heart failure and other cardiovascular diseases. However, the underlying molecular mechanisms are poorly understood, and the genes that mediate direct effects of aldosterone in the cardiovascular system are yet to be identified. The goal of this study was to identify genes that are directly regulated by aldosterone in cardiomyocytes and thus potentially play a role in initiating MR-mediated effects in the heart. We generated clonal cell lines of cardiomyocytes (H9C2 cells) stably expressing the MR. Using these cell lines and Affymetrix microarrays, we determined the effects of physiological concentrations of aldosterone on the gene expression profile. In two independent microarrays we identified 48 genes that were induced more than 1.5-fold (27 known genes and 21 expressed sequence tags) and five (three known genes and two expressed sequence tags) that were suppressed by a 2-h aldosterone treatment. We focused on eight genes that have a potential function in cardiovascular regulation and verified their aldosterone regulation using quantitative RT-PCR. These include genes related to extracellular matrix regulation (tenascin-X, ADAMTS1, PAI-1, UPAR, and hyaluronic acid synthase-2), signaling, and regulation of vascular tone (RGS2, adrenomedullin) and inflammation (orosomucoid). Protein synthesis inhibitors did not prevent aldosterone induction of these genes. We conclude that in cardiomyocytes aldosterone rapidly and directly regulates the expression of several genes that are involved in cardiac remodeling and regulation of blood pressure and thus might be mediators of the physiological and pathophysiological effects of aldosterone on the cardiovascular system.


Asunto(s)
Aldosterona/farmacología , Regulación de la Expresión Génica/efectos de los fármacos , Genes Inmediatos-Precoces/efectos de los fármacos , Miocitos Cardíacos/efectos de los fármacos , Remodelación Ventricular , Animales , Línea Celular , Proteínas de la Matriz Extracelular/genética , Proteínas de la Matriz Extracelular/metabolismo , Miocitos Cardíacos/metabolismo , Análisis de Secuencia por Matrices de Oligonucleótidos , Orosomucoide/genética , Orosomucoide/metabolismo , Biosíntesis de Proteínas/efectos de los fármacos , Ratas , Receptores de Mineralocorticoides/genética , Receptores de Mineralocorticoides/metabolismo , Transfección , Vasodilatación/genética , Remodelación Ventricular/efectos de los fármacos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA