Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros













Base de datos
Intervalo de año de publicación
1.
Orv Hetil ; 165(20): 799-800, 2024 May 19.
Artículo en Húngaro | MEDLINE | ID: mdl-38762878
2.
BMC Genomics ; 25(1): 278, 2024 Mar 14.
Artículo en Inglés | MEDLINE | ID: mdl-38486136

RESUMEN

There is an ongoing process in which mitochondrial sequences are being integrated into the nuclear genome. The importance of these sequences has already been revealed in cancer biology, forensic, phylogenetic studies and in the evolution of the eukaryotic genetic information. Human and numerous model organisms' genomes were described from those sequences point of view. Furthermore, recent studies were published on the patterns of these nuclear localised mitochondrial sequences in different taxa.However, the results of the previously released studies are difficult to compare due to the lack of standardised methods and/or using few numbers of genomes. Therefore, in this paper our primary goal is to establish a uniform mining pipeline to explore these nuclear localised mitochondrial sequences.Our results show that the frequency of several repetitive elements is higher in the flanking regions of these sequences than expected. A machine learning model reveals that the flanking regions' repetitive elements and different structural characteristics are highly influential during the integration process.In this paper, we introduce a general mining pipeline for all mammalian genomes. The workflow is publicly available and is believed to serve as a validated baseline for future research in this field. We confirm the widespread opinion, on - as to our current knowledge - the largest dataset, that structural circumstances and events corresponding to repetitive elements are highly significant. An accurate model has also been trained to predict these sequences and their corresponding flanking regions.


Asunto(s)
Genoma Mitocondrial , Animales , Humanos , Filogenia , ADN Mitocondrial/genética , Mamíferos/genética , Secuencias Repetitivas de Ácidos Nucleicos
3.
Nucleic Acids Res ; 52(6): 3088-3105, 2024 Apr 12.
Artículo en Inglés | MEDLINE | ID: mdl-38300793

RESUMEN

Mitochondrial DNA (mtDNA) recombination in animals has remained enigmatic due to its uniparental inheritance and subsequent homoplasmic state, which excludes the biological need for genetic recombination, as well as limits tools to study it. However, molecular recombination is an important genome maintenance mechanism for all organisms, most notably being required for double-strand break repair. To demonstrate the existence of mtDNA recombination, we took advantage of a cell model with two different types of mitochondrial genomes and impaired its ability to degrade broken mtDNA. The resulting excess of linear DNA fragments caused increased formation of cruciform mtDNA, appearance of heterodimeric mtDNA complexes and recombinant mtDNA genomes, detectable by Southern blot and by long range PacBio® HiFi sequencing approach. Besides utilizing different electrophoretic methods, we also directly observed molecular complexes between different mtDNA haplotypes and recombination intermediates using transmission electron microscopy. We propose that the known copy-choice recombination by mitochondrial replisome could be sufficient for the needs of the small genome, thus removing the requirement for a specialized mitochondrial recombinase. The error-proneness of this system is likely to contribute to the formation of pathological mtDNA rearrangements.


Asunto(s)
Mitocondrias , Recombinación Genética , Animales , Mitocondrias/genética , Mitocondrias/metabolismo , ADN Mitocondrial/genética , ADN Mitocondrial/metabolismo , Reparación del ADN , Replicación del ADN/genética , Mamíferos/genética
4.
Front Plant Sci ; 13: 1065419, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36733596

RESUMEN

Ralstonia solanacearum (Rs), the causal agent of bacterial wilt disease in an unusually wide range of host plants, including potato (Solanum tuberosum), is one of the most destructive phytopathogens that seriously reduces crop yields worldwide. Identification of defence mechanisms underlying bacterial wilt resistance is a prerequisite for biotechnological approaches to resistance breeding. Resistance to Rs has been reported only in a few potato landraces and cultivars. Our in vitro inoculation bioassays confirmed that the cultivars 'Calalo Gaspar' (CG) and 'Cruza 148' (CR) are resistant to Rs infection. Comparative transcriptome analyses of CG and CR roots, as well as of the roots of an Rs-susceptible cultivar, 'Désirée' (DES), were carried out two days after Rs infection, in parallel with their respective noninfected controls. In CR and DES, the upregulation of chitin interactions and cell wall-related genes was detected. The phenylpropanoid biosynthesis and glutathione metabolism pathways were induced only in CR, as confirmed by high levels of lignification over the whole stele in CR roots six days after Rs infection. At the same time, Rs infection greatly increased the concentrations of chlorogenic acid and quercetin derivatives in CG roots as it was detected using ultra-performance liquid chromatography - tandem mass spectrometry. Characteristic increases in the expression of MAP kinase signalling pathway genes and in the concentrations of jasmonic, salicylic, abscisic and indoleacetic acid were measured in DES roots. These results indicate different Rs defence mechanisms in the two resistant potato cultivars and a different response to Rs infection in the susceptible cultivar.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA