Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros













Base de datos
Intervalo de año de publicación
1.
Nat Biotechnol ; 41(6): 858-869, 2023 06.
Artículo en Inglés | MEDLINE | ID: mdl-36593399

RESUMEN

Expansion microscopy enables nanoimaging with conventional microscopes by physically and isotropically magnifying preserved biological specimens embedded in a crosslinked water-swellable hydrogel. Current expansion microscopy protocols require prior treatment with reactive anchoring chemicals to link specific labels and biomolecule classes to the gel. We describe a strategy called Magnify, which uses a mechanically sturdy gel that retains nucleic acids, proteins and lipids without the need for a separate anchoring step. Magnify expands biological specimens up to 11 times and facilitates imaging of cells and tissues with effectively around 25-nm resolution using a diffraction-limited objective lens of about 280 nm on conventional optical microscopes or with around 15 nm effective resolution if combined with super-resolution optical fluctuation imaging. We demonstrate Magnify on a broad range of biological specimens, providing insight into nanoscopic subcellular structures, including synaptic proteins from mouse brain, podocyte foot processes in formalin-fixed paraffin-embedded human kidney and defects in cilia and basal bodies in drug-treated human lung organoids.


Asunto(s)
Riñón , Microscopía , Ratones , Animales , Humanos , Microscopía/métodos
2.
Biol Psychiatry ; 85(3): 237-247, 2019 02 01.
Artículo en Inglés | MEDLINE | ID: mdl-30269865

RESUMEN

BACKGROUND: Dysregulation of arousal is symptomatic of numerous psychiatric disorders. Previous research has shown that the activity of dopamine (DA) neurons in the ventral periaqueductal gray (vPAG) tracks with arousal state, and lesions of vPAGDA cells increase sleep. However, the circuitry controlling these wake-promoting DA neurons is unknown. METHODS: This study combined designer receptors exclusively activated by designer drugs (DREADDs), behavioral pharmacology, electrophysiology, and immunoelectron microscopy in male and female mice to elucidate mechanisms in the vPAG that promote arousal. RESULTS: Activation of locus coeruleus projections to the vPAG or vPAGDA neurons induced by DREADDs promoted arousal. Similarly, agonist stimulation of vPAG alpha1-adrenergic receptors (α1ARs) increased latency to fall asleep, whereas α1AR blockade had the opposite effect. α1AR stimulation drove vPAGDA activity in a glutamate-dependent, action potential-independent manner. Compared with other dopaminergic brain regions, α1ARs were enriched on astrocytes in the vPAG, and mimicking α1AR transmission specifically in vPAG astrocytes via Gq-DREADDS was sufficient to increase arousal. In general, the wake-promoting effects observed were not accompanied by hyperactivity. CONCLUSIONS: These experiments revealed that vPAG α1ARs increase arousal, promote glutamatergic input onto vPAGDA neurons, and are abundantly expressed on astrocytes. Activation of locus coeruleus inputs, vPAG astrocytes, or vPAGDA neurons increase sleep latency but do not produce hyperactivity. Together, these results support an arousal circuit whereby noradrenergic transmission at astrocytic α1ARs activates wake-promoting vPAGDA neurons via glutamate transmission.


Asunto(s)
Nivel de Alerta/fisiología , Sustancia Gris Periacueductal/fisiología , Receptores Adrenérgicos alfa 1/fisiología , Potenciales de Acción/fisiología , Agonistas de Receptores Adrenérgicos alfa 1/farmacología , Antagonistas de Receptores Adrenérgicos alfa 1/farmacología , Animales , Astrocitos/fisiología , Femenino , Locus Coeruleus/fisiología , Masculino , Ratones , Sueño/efectos de los fármacos
3.
Neuropsychopharmacology ; 43(7): 1498-1509, 2018 06.
Artículo en Inglés | MEDLINE | ID: mdl-29511334

RESUMEN

Prescription psychostimulants produce rapid changes in mood, energy, and attention. These drugs are widely used and abused. However, their effects in human neocortex on glutamate and glutamine (pooled as Glx), and key neurometabolites such as N-acetylaspartate (tNAA), creatine (tCr), choline (Cho), and myo-inositol (Ins) are poorly understood. Changes in these compounds could inform the mechanism of action of psychostimulant drugs and their abuse potential in humans. We investigated the acute impact of two FDA-approved psychostimulant drugs on neurometabolites using magnetic resonance spectroscopy (1H MRS). Single clinically relevant doses of d-amphetamine (AMP, 20 mg oral), methamphetamine (MA, 20 mg oral; Desoxyn®), or placebo were administered to healthy participants (n = 26) on three separate test days in a placebo-controlled, double-blinded, within-subjects crossover design. Each participant experienced all three conditions and thus served as his/her own control. 1H MRS was conducted in the dorsal anterior cingulate cortex (dACC), an integrative neocortical hub, during the peak period of drug responses (140-150 m post ingestion). D-amphetamine increased the level of Glu (p = .0001), Glx (p = .003), and tCr (p = .0067) in the dACC. Methamphetamine increased Glu in females, producing a significant crossover interaction pattern with gender (p = .02). Drug effects on Glu, tCr, and Glx were positively correlated with subjective drug responses, predicting both the duration of AMP liking (Glu: r = +.49, p = .02; tCr: r = +.41, p = .047) and the magnitude of peak drug high to MA (Glu: r = +.52, p = .016; Glx: r = +.42, p = .049). Neither drug affected the levels of tNAA, Cho, or Ins after correction for multiple comparisons. We conclude that d-amphetamine increased the concentration of glutamate, Glx, and tCr in the dACC in male and female volunteers 21/2 hours after drug consumption. There was evidence that methamphetamine differentially affects dACC Glu levels in women and men. These findings provide the first experimental evidence that specific psychostimulants increase the level of glutamatergic compounds in the human brain, and that glutamatergic changes predict the extent and magnitude of subjective responses to psychostimulants.


Asunto(s)
Afecto/efectos de los fármacos , Creatina/metabolismo , Dextroanfetamina/farmacología , Ácido Glutámico/metabolismo , Glutamina/metabolismo , Giro del Cíngulo/metabolismo , Voluntarios Sanos/psicología , Metanfetamina/farmacología , Adolescente , Adulto , Ácido Aspártico/análogos & derivados , Ácido Aspártico/metabolismo , Estimulantes del Sistema Nervioso Central/farmacología , Colina/metabolismo , Estudios Cruzados , Método Doble Ciego , Femenino , Humanos , Inositol/metabolismo , Masculino , Espectroscopía de Protones por Resonancia Magnética , Factores Sexuales , Adulto Joven
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA