Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Sci Rep ; 13(1): 12399, 2023 08 08.
Artículo en Inglés | MEDLINE | ID: mdl-37553409

RESUMEN

Inspired by advances in wearable technologies, we design and perform human-subject experiments. We aim to investigate the effects of applying safe actuation (i.e., auditory, gustatory, and olfactory) for the purpose of regulating cognitive arousal and enhancing the performance states. In two proposed experiments, subjects are asked to perform a working memory experiment called n-back tasks. Next, we incorporate listening to different types of music, drinking coffee, and smelling perfume as safe actuators. We employ signal processing methods to seamlessly infer participants' brain cognitive states. The results demonstrate the effectiveness of the proposed safe actuation in regulating the arousal state and enhancing performance levels. Employing only wearable devices for human monitoring and using safe actuation intervention are the key components of the proposed experiments. Our dataset fills the existing gap of the lack of publicly available datasets for the self-management of internal brain states using wearable devices and safe everyday actuators. This dataset enables further machine learning and system identification investigations to facilitate future smart work environments. This would lead us to the ultimate idea of developing practical automated personalized closed-loop architectures for managing internal brain states and enhancing the quality of life.


Asunto(s)
Estimulación Acústica , Encéfalo , Cognición , Memoria a Corto Plazo , Olfato , Gusto , Dispositivos Electrónicos Vestibles , Femenino , Humanos , Masculino , Nivel de Alerta/fisiología , Encéfalo/fisiología , Café , Cognición/fisiología , Conjuntos de Datos como Asunto , Memoria a Corto Plazo/fisiología , Música , Perfumes , Proyectos Piloto , Calidad de Vida , Olfato/fisiología , Gusto/fisiología , Adulto , Electroencefalografía
2.
Front Neurosci ; 15: 695975, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34434085

RESUMEN

Hypercortisolism or Cushing's disease, which corresponds to the excessive levels of cortisol hormone, is associated with tiredness and fatigue during the day and disturbed sleep at night. Our goal is to employ a wearable brain machine interface architecture to regulate one's energy levels in hypercortisolism. In the present simulation study, we generate multi-day cortisol profile data for ten subjects both in healthy and disease conditions. To relate an internal hidden cognitive energy state to one's cortisol secretion patterns, we employ a state-space model. Particularly, we consider circadian upper and lower bound envelopes on cortisol levels, and timings of hypothalamic pulsatile activity underlying cortisol secretions as continuous and binary observations, respectively. To estimate the hidden cognitive energy-related state, we use Bayesian filtering. In our proposed architecture, we infer one's cognitive energy-related state using wearable devices rather than monitoring the brain activity directly and close the loop utilizing fuzzy control. To model actuation in the real-time closed-loop architecture, we simulate two types of medications that result in increasing and decreasing the energy levels in the body. Finally, we close the loop using a knowledge-based control approach. The results on ten simulated profiles verify how the proposed architecture is able to track the energy state and regulate it using hypothetical medications. In a simulation study based on experimental data, we illustrate the feasibility of designing a wearable brain machine interface architecture for energy regulation in hypercortisolism. This simulation study is a first step toward the ultimate goal of managing hypercortisolism in real-world situations.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...