Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Nat Chem Biol ; 17(8): 906-914, 2021 08.
Artículo en Inglés | MEDLINE | ID: mdl-34140682

RESUMEN

The development of unnatural base pairs (UBPs) has greatly increased the information storage capacity of DNA, allowing for transcription of unnatural RNA by the heterologously expressed T7 RNA polymerase (RNAP) in Escherichia coli. However, little is known about how UBPs are transcribed by cellular RNA polymerases. Here, we investigated how synthetic unnatural nucleotides, NaM and TPT3, are recognized by eukaryotic RNA polymerase II (Pol II) and found that Pol II is able to selectively recognize UBPs with high fidelity when dTPT3 is in the template strand and rNaMTP acts as the nucleotide substrate. Our structural analysis and molecular dynamics simulation provide structural insights into transcriptional processing of UBPs in a stepwise manner. Intriguingly, we identified a novel 3'-RNA binding site after rNaM addition, termed the swing state. These results may pave the way for future studies in the design of transcription and translation strategies in higher organisms with expanded genetic codes.


Asunto(s)
Eucariontes/enzimología , ARN Polimerasa II/genética , Transcripción Genética/genética , Emparejamiento Base , Simulación de Dinámica Molecular , ARN Polimerasa II/química , ARN Polimerasa II/metabolismo
2.
Nat Chem Biol ; 16(5): 570-576, 2020 05.
Artículo en Inglés | MEDLINE | ID: mdl-32251411

RESUMEN

Natural organisms use a four-letter genetic alphabet that makes available 64 triplet codons, of which 61 are sense codons used to encode proteins with the 20 canonical amino acids. We have shown that the unnatural nucleotides dNaM and dTPT3 can pair to form an unnatural base pair (UBP) and allow for the creation of semisynthetic organisms (SSOs) with additional sense codons. Here, we report a systematic analysis of the unnatural codons. We identify nine unnatural codons that can produce unnatural protein with nearly complete incorporation of an encoded noncanonical amino acid (ncAA). We also show that at least three of the codons are orthogonal and can be simultaneously decoded in the SSO, affording the first 67-codon organism. The ability to incorporate multiple, different ncAAs site specifically into a protein should now allow the development of proteins with novel activities, and possibly even SSOs with new forms and functions.


Asunto(s)
Emparejamiento Base , Codón , Ingeniería Genética/métodos , Nucleótidos/química , Aminoácidos , Anticodón , Escherichia coli/genética , Proteínas Fluorescentes Verdes/genética , Microorganismos Modificados Genéticamente , Nucleótidos/genética , Proteínas Recombinantes/genética
3.
J Am Chem Soc ; 141(51): 20166-20170, 2019 12 26.
Artículo en Inglés | MEDLINE | ID: mdl-31841336

RESUMEN

We have created a bacterial semisynthetic organism (SSO) that retains an unnatural base pair (UBP) in its DNA, transcribes it into mRNA and tRNA with cognate unnatural codons and anticodons, and after the tRNA is charged with a noncanonical amino acid synthesizes proteins containing the noncanonical amino acid. Here, we report the first progress toward the creation of eukaryotic SSOs. After demonstrating proof-of-concept with human HEK293 cells, we show that a variety of different unnatural codon-anticodon pairs can efficiently mediate the synthesis of unnatural proteins in CHO cells. Interestingly, we find that there are both similarities and significant differences between how the prokaryotic and eukaryotic ribosomes recognize the UBP, with the eukaryotic ribosome appearing more tolerant. The results represent the first progress toward eukaryotic SSOs and, in fact, suggest that such SSOs might be able to retain more unnatural information than their bacterial counterparts.


Asunto(s)
Aminoácidos/genética , ADN Bacteriano/genética , Escherichia coli/genética , ARN Mensajero/genética , ARN de Transferencia/genética , Animales , Emparejamiento Base , Células CHO , Cricetulus , Código Genético , Células HEK293 , Humanos , Estructura Molecular
4.
J Am Chem Soc ; 141(27): 10644-10653, 2019 07 10.
Artículo en Inglés | MEDLINE | ID: mdl-31241334

RESUMEN

Previously, we reported the creation of a semi-synthetic organism (SSO) that stores and retrieves increased information by virtue of stably maintaining an unnatural base pair (UBP) in its DNA, transcribing the corresponding unnatural nucleotides into the codons and anticodons of mRNAs and tRNAs, and then using them to produce proteins containing noncanonical amino acids (ncAAs). Here we report a systematic extension of the effort to optimize the SSO by exploring a variety of deoxy- and ribonucleotide analogues. Importantly, this includes the first in vivo structure-activity relationship (SAR) analysis of unnatural ribonucleoside triphosphates. Similarities and differences between how DNA and RNA polymerases recognize the unnatural nucleotides were observed, and remarkably, we found that a wide variety of unnatural ribonucleotides can be efficiently transcribed into RNA and then productively and selectively paired at the ribosome to mediate the synthesis of proteins with ncAAs. The results extend previous studies, demonstrating that nucleotides bearing no significant structural or functional homology to the natural nucleotides can be efficiently and selectively paired during replication, to include each step of the entire process of information storage and retrieval. From a practical perspective, the results identify the most optimal UBP for replication and transcription, as well as the most optimal unnatural ribonucleoside triphosphates for transcription and translation. The optimized SSO is now, for the first time, able to efficiently produce proteins containing multiple, proximal ncAAs.


Asunto(s)
Nucleótidos/genética , Biosíntesis de Proteínas , Biología Sintética/métodos , Transcripción Genética , Emparejamiento Base , Desoxirribonucleótidos/química , Desoxirribonucleótidos/genética , Código Genético , Nucleótidos/química
5.
J Am Chem Soc ; 140(47): 16115-16123, 2018 11 28.
Artículo en Inglés | MEDLINE | ID: mdl-30418780

RESUMEN

We have developed a family of unnatural base pairs (UBPs), exemplified by the pair formed between dNaM and dTPT3, for which pairing is mediated not by complementary hydrogen bonding but by hydrophobic and packing forces. These UBPs enabled the creation of the first semisynthetic organisms (SSOs) that store increased genetic information and use it to produce proteins containing noncanonical amino acids. However, retention of the UBPs was poor in some sequence contexts. Here, to optimize the SSO, we synthesize two novel benzothiophene-based dNaM analogs, dPTMO and dMTMO, and characterize the corresponding UBPs, dPTMO-dTPT3 and dMTMO-dTPT3. We demonstrate that these UBPs perform similarly to, or slightly worse than, dNaM-dTPT3 in vitro. However, in the in vivo environment of an SSO, retention of dMTMO-dTPT3, and especially dPTMO-dTPT3, is significantly higher than that of dNaM-dTPT3. This more optimal in vivo retention results from better replication, as opposed to more efficient import of the requisite unnatural nucleoside triphosphates. Modeling studies suggest that the more optimal replication results from specific internucleobase interactions mediated by the thiophene sulfur atoms. Finally, we show that dMTMO and dPTMO efficiently template the transcription of RNA containing TPT3 and that their improved retention in DNA results in more efficient production of proteins with noncanonical amino acids. This is the first instance of using performance within the SSO as part of the UBP evaluation and optimization process. From a general perspective, the results demonstrate the importance of evaluating synthetic biology "parts" in their in vivo context and further demonstrate the ability of hydrophobic and packing interactions to replace the complementary hydrogen bonding that underlies the replication of natural base pairs. From a more practical perspective, the identification of dMTMO-dTPT3 and especially dPTMO-dTPT3 represents significant progress toward the development of SSOs with an unrestricted ability to store and retrieve increased information.


Asunto(s)
ADN/genética , Nucleótidos/genética , Emparejamiento Base , Secuencia de Bases , ADN/química , Replicación del ADN , Escherichia coli/genética , Código Genético , Proteínas Fluorescentes Verdes/genética , Interacciones Hidrofóbicas e Hidrofílicas , Cinética , Methanosarcina barkeri/genética , Nucleótidos/síntesis química , Nucleótidos/química , Biosíntesis de Proteínas , ARN de Transferencia/genética , Biología Sintética/métodos
6.
J Am Chem Soc ; 140(4): 1447-1454, 2018 01 31.
Artículo en Inglés | MEDLINE | ID: mdl-29338214

RESUMEN

Nucleoside triphosphates play a central role in biology, but efforts to study these roles have proven difficult because the levels of triphosphates are tightly regulated in a cell and because individual triphosphates can be difficult to label or modify. In addition, many synthetic biology efforts are focused on the development of unnatural nucleoside triphosphates that perform specific functions in the cellular environment. In general, both of these efforts would be facilitated by a general means to directly introduce desired triphosphates into cells. Previously, we demonstrated that recombinant expression of a nucleoside triphosphate transporter from Phaeodactylum tricornutum (PtNTT2) in Escherichia coli functions to import triphosphates that are added to the media. Here, to explore the generality and utility of this approach, we report a structure-activity relationship study of PtNTT2. Using a conventional competitive uptake inhibition assay, we characterize the effects of nucleobase, sugar, and triphosphate modification, and then develop an LC-MS/MS assay to directly measure the effects of the modifications on import. Lastly, we use the transporter to import radiolabeled or 2'-fluoro-modified triphosphates and quantify their incorporation into DNA and RNA. The results demonstrate the general utility of the PtNTT2-mediated import of natural or modified nucleoside triphosphates for different molecular or synthetic biology applications.


Asunto(s)
Adenosina Trifosfato/antagonistas & inhibidores , Productos Biológicos/metabolismo , Diatomeas/metabolismo , Nucleótidos/metabolismo , Polifosfatos/metabolismo , Adenosina Trifosfato/farmacocinética , Productos Biológicos/química , Diatomeas/química , Estructura Molecular , Nucleótidos/química , Nucleótidos/farmacología , Polifosfatos/química , Polifosfatos/farmacología
7.
Acc Chem Res ; 51(2): 394-403, 2018 02 20.
Artículo en Inglés | MEDLINE | ID: mdl-29198111

RESUMEN

The information available to any organism is encoded in a four nucleotide, two base pair genetic code. Since its earliest days, the field of synthetic biology has endeavored to impart organisms with novel attributes and functions, and perhaps the most fundamental approach to this goal is the creation of a fifth and sixth nucleotide that pair to form a third, unnatural base pair (UBP) and thus allow for the storage and retrieval of increased information. Achieving this goal, by definition, requires synthetic chemistry to create unnatural nucleotides and a medicinal chemistry-like approach to guide their optimization. With this perspective, almost 20 years ago we began designing unnatural nucleotides with the ultimate goal of developing UBPs that function in vivo, and thus serve as the foundation of semi-synthetic organisms (SSOs) capable of storing and retrieving increased information. From the beginning, our efforts focused on the development of nucleotides that bear predominantly hydrophobic nucleobases and thus that pair not based on the complementary hydrogen bonds that are so prominent among the natural base pairs but rather via hydrophobic and packing interactions. It was envisioned that such a pairing mechanism would provide a basal level of selectivity against pairing with natural nucleotides, which we expected would be the greatest challenge; however, this choice mandated starting with analogs that have little or no homology to their natural counterparts and that, perhaps not surprisingly, performed poorly. Progress toward their optimization was driven by the construction of structure-activity relationships, initially from in vitro steady-state kinetic analysis, then later from pre-steady-state and PCR-based assays, and ultimately from performance in vivo, with the results augmented three times with screens that explored combinations of the unnatural nucleotides that were too numerous to fully characterize individually. The structure-activity relationship data identified multiple features required by the UBP, and perhaps most prominent among them was a substituent ortho to the glycosidic linkage that is capable of both hydrophobic packing and hydrogen bonding, and nucleobases that stably stack with flanking natural nucleobases in lieu of the potentially more stabilizing stacking interactions afforded by cross strand intercalation. Most importantly, after the examination of hundreds of unnatural nucleotides and thousands of candidate UBPs, the efforts ultimately resulted in the identification of a family of UBPs that are well recognized by DNA polymerases when incorporated into DNA and that have been used to create SSOs that store and retrieve increased information. In addition to achieving a longstanding goal of synthetic biology, the results have important implications for our understanding of both the molecules and forces that can underlie biological processes, so long considered the purview of molecules benefiting from eons of evolution, and highlight the promise of applying the approaches and methodologies of synthetic and medical chemistry in the pursuit of synthetic biology.


Asunto(s)
ADN/genética , Nucleótidos/genética , Biología Sintética/métodos , Emparejamiento Base , Interacciones Hidrofóbicas e Hidrofílicas , Nucleótidos/síntesis química , Nucleótidos/química , Relación Estructura-Actividad
8.
Nature ; 551(7682): 644-647, 2017 11 29.
Artículo en Inglés | MEDLINE | ID: mdl-29189780

RESUMEN

Since at least the last common ancestor of all life on Earth, genetic information has been stored in a four-letter alphabet that is propagated and retrieved by the formation of two base pairs. The central goal of synthetic biology is to create new life forms and functions, and the most general route to this goal is the creation of semi-synthetic organisms whose DNA harbours two additional letters that form a third, unnatural base pair. Previous efforts to generate such semi-synthetic organisms culminated in the creation of a strain of Escherichia coli that, by virtue of a nucleoside triphosphate transporter from Phaeodactylum tricornutum, imports the requisite unnatural triphosphates from its medium and then uses them to replicate a plasmid containing the unnatural base pair dNaM-dTPT3. Although the semi-synthetic organism stores increased information when compared to natural organisms, retrieval of the information requires in vivo transcription of the unnatural base pair into mRNA and tRNA, aminoacylation of the tRNA with a non-canonical amino acid, and efficient participation of the unnatural base pair in decoding at the ribosome. Here we report the in vivo transcription of DNA containing dNaM and dTPT3 into mRNAs with two different unnatural codons and tRNAs with cognate unnatural anticodons, and their efficient decoding at the ribosome to direct the site-specific incorporation of natural or non-canonical amino acids into superfolder green fluorescent protein. The results demonstrate that interactions other than hydrogen bonding can contribute to every step of information storage and retrieval. The resulting semi-synthetic organism both encodes and retrieves increased information and should serve as a platform for the creation of new life forms and functions.


Asunto(s)
Aminoácidos/química , Aminoácidos/metabolismo , Anticodón/genética , Emparejamiento Base , Escherichia coli/genética , Ingeniería Genética , ARN de Transferencia/genética , Biología Sintética/métodos , Aminoácidos/genética , Diatomeas/genética , Escherichia coli/metabolismo , Genes Reporteros/genética , Proteínas Fluorescentes Verdes/química , Proteínas Fluorescentes Verdes/genética , Enlace de Hidrógeno , Proteínas de Transporte de Nucleósidos/genética , Proteínas de Transporte de Nucleósidos/metabolismo , Plásmidos/genética , ARN Mensajero/química , ARN Mensajero/genética , ARN de Transferencia/química , Ribosomas/metabolismo
9.
J Am Chem Soc ; 139(33): 11427-11433, 2017 08 23.
Artículo en Inglés | MEDLINE | ID: mdl-28796508

RESUMEN

In an effort to expand the genetic alphabet and create semi-synthetic organisms (SSOs) that store and retrieve increased information, we have developed the unnatural base pairs (UBPs) dNaM and d5SICS or dTPT3 (dNaM-d5SICS and dNaM-dTPT3). The UBPs form based on hydrophobic and packing forces, as opposed to complementary hydrogen bonding, and while they are both retained within the in vivo environment of an Escherichia coli SSO, their development was based on structure-activity relationship (SAR) data generated in vitro. To address the likely possibility of different requirements of the in vivo environment, we screened 135 candidate UBPs for optimal performance in the SSO. Interestingly, we find that in vivo SARs differ from those collected in vitro, and most importantly, we identify four UBPs whose retention in the DNA of the SSO is higher than that of dNaM-dTPT3, which was previously the most promising UBP identified. The identification of these four UBPs further demonstrates that when optimized, hydrophobic and packing forces may be used to replace the complementary hydrogen bonding used by natural pairs and represents a significant advance in our continuing efforts to develop SSOs that store and retrieve more information than natural organisms.


Asunto(s)
ADN/química , ADN/genética , Código Genético , Biología Sintética/métodos , Emparejamiento Base , Replicación del ADN , Escherichia coli/química , Escherichia coli/genética , Enlace de Hidrógeno , Interacciones Hidrofóbicas e Hidrofílicas , Nucleótidos/química , Nucleótidos/genética , Plásmidos/química , Plásmidos/genética
11.
ACS Synth Biol ; 6(10): 1834-1840, 2017 10 20.
Artículo en Inglés | MEDLINE | ID: mdl-28654252

RESUMEN

To bestow cells with novel forms and functions, the goal of synthetic biology, we have developed the unnatural nucleoside triphosphates dNaMTP and dTPT3TP, which form an unnatural base pair (UBP) and expand the genetic alphabet. While the UBP may be retained in the DNA of a living cell, its retention is sequence-dependent. We now report a steady-state kinetic characterization of the rate with which the Klenow fragment of E. coli DNA polymerase I synthesizes the UBP and its mispairs in a variety of sequence contexts. Correct UBP synthesis is as efficient as for a natural base pair, except in one sequence context, and in vitro performance is correlated with in vivo performance. The data elucidate the determinants of efficient UBP synthesis, show that the dNaM-dTPT3 UBP is the first generally recognized natural-like base pair, and importantly, demonstrate that dNaMTP and dTPT3TP are well optimized and standardized parts for the expansion of the genetic alphabet.


Asunto(s)
ADN/genética , Biología Sintética/métodos , Emparejamiento Base/genética , Replicación del ADN/genética , Escherichia coli/genética , Interacciones Hidrofóbicas e Hidrofílicas
12.
J Am Chem Soc ; 139(6): 2464-2467, 2017 02 15.
Artículo en Inglés | MEDLINE | ID: mdl-28170246

RESUMEN

We have developed an unnatural base pair (UBP) and a semisynthetic organism (SSO) that imports the constituent unnatural nucleoside triphosphates and uses them to replicate DNA containing the UBP. However, propagation of the UBP is at least in part limited by the stability of the unnatural triphosphates, which are degraded by cellular and secreted phosphatases. To circumvent this problem, we now report the synthesis and evaluation of unnatural triphosphates with their ß,γ-bridging oxygen replaced with a difluoromethylene moiety, yielding dNaMTPCF2 and dTPT3TPCF2. We find that although dNaMTPCF2 cannot support in vivo replication, likely due to poor polymerase recognition, dTPT3TPCF2 can, and moreover, its increased stability can contribute to increased UBP retention. The data demonstrate the promise of this chemical approach to SSO optimization, and suggest that other modifications should be sought that confer phosphatase resistance without interfering with polymerase recognition.


Asunto(s)
ADN/genética , Código Genético , Hidrocarburos Fluorados/química , Nucleótidos/química , Oxígeno/química , Polifosfatos/química , Emparejamiento Base , ADN/química , Replicación del ADN
13.
Proc Natl Acad Sci U S A ; 114(6): 1317-1322, 2017 02 07.
Artículo en Inglés | MEDLINE | ID: mdl-28115716

RESUMEN

All natural organisms store genetic information in a four-letter, two-base-pair genetic alphabet. The expansion of the genetic alphabet with two synthetic unnatural nucleotides that selectively pair to form an unnatural base pair (UBP) would increase the information storage potential of DNA, and semisynthetic organisms (SSOs) that stably harbor this expanded alphabet would thereby have the potential to store and retrieve increased information. Toward this goal, we previously reported that Escherichia coli grown in the presence of the unnatural nucleoside triphosphates dNaMTP and d5SICSTP, and provided with the means to import them via expression of a plasmid-borne nucleoside triphosphate transporter, replicates DNA containing a single dNaM-d5SICS UBP. Although this represented an important proof-of-concept, the nascent SSO grew poorly and, more problematically, required growth under controlled conditions and even then was unable to indefinitely store the unnatural information, which is clearly a prerequisite for true semisynthetic life. Here, to fortify and vivify the nascent SSO, we engineered the transporter, used a more chemically optimized UBP, and harnessed the power of the bacterial immune response by using Cas9 to eliminate DNA that had lost the UBP. The optimized SSO grows robustly, constitutively imports the unnatural triphosphates, and is able to indefinitely retain multiple UBPs in virtually any sequence context. This SSO is thus a form of life that can stably store genetic information using a six-letter, three-base-pair alphabet.


Asunto(s)
Código Genético , Sistemas CRISPR-Cas , Oligonucleótidos , Plásmidos , Biología Sintética
14.
Tetrahedron ; 70(27-28): 4147-4155, 2014 Jul 08.
Artículo en Inglés | MEDLINE | ID: mdl-24994941

RESUMEN

Appropriately substituted 5-alkyn-1-ol systems bearing a nitrile moiety at the triple bond serve as versatile precursors to a variety of cyclooctenone derivatives via a "one-pot" base-catalyzed oxyanionic 6-exo dig cyclization/Claisen rearrangement sequence under microwave irradiation. It was found that the initially formed cyclic intermediate consists of a mixture of endo and exocyclic isomers, which appear to be in equilibrium under the reaction conditions. However, the only observed products from these reactions are α-cyano substituted cyclooctenones, derived from the exocyclic dihydrofuran intermediates.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...