Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 90
Filtrar
1.
Sci Immunol ; 9(100): eadq8843, 2024 Oct 04.
Artículo en Inglés | MEDLINE | ID: mdl-39365874

RESUMEN

Dendritic cells (DCs) are uniquely capable of transporting tumor antigens to tumor-draining lymph nodes (tdLNs) and interact with effector T cells in the tumor microenvironment (TME) itself, mediating both natural antitumor immunity and the response to checkpoint blockade immunotherapy. Using LIPSTIC (Labeling Immune Partnerships by SorTagging Intercellular Contacts)-based single-cell transcriptomics, we identified individual DCs capable of presenting antigen to CD4+ T cells in both the tdLN and TME. Our findings revealed that DCs with similar hyperactivated transcriptional phenotypes interact with helper T cells both in tumors and in the tdLN and that checkpoint blockade drugs enhance these interactions. These findings show that a relatively small fraction of DCs is responsible for most of the antigen presentation in the tdLN and TME to both CD4+ and CD8+ tumor-specific T cells and that classical checkpoint blockade enhances CD40-driven DC activation at both sites.


Asunto(s)
Linfocitos T CD4-Positivos , Células Dendríticas , Ratones Endogámicos C57BL , Células Dendríticas/inmunología , Animales , Linfocitos T CD4-Positivos/inmunología , Ratones , Microambiente Tumoral/inmunología , Femenino , Humanos , Neoplasias/inmunología , Neoplasias/tratamiento farmacológico
2.
Mol Ecol ; : e17512, 2024 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-39219267

RESUMEN

Long-term genetic studies of wild populations are very scarce, but are essential for connecting ecological and population genetics models, and for understanding the dynamics of biodiversity. We present a study of a wild wheat population sampled over a 36-year period at high spatial resolution. We genotyped 832 individuals from regular sampling along transects during the course of the experiment. Genotypes were clustered into ecological microhabitats over scales of tens of metres, and this clustering was remarkably stable over the 36 generations of the study. Simulations show that it is difficult to determine whether this spatial and temporal stability reflects extremely limited dispersal or fine-scale local adaptation to ecological parameters. Using a common-garden experiment, we showed that the genotypes found in distinct microhabitats differ phenotypically. Our results provide a rare insight into the population genetics of a natural population over a long monitoring period.

3.
J Vis Exp ; (210)2024 Aug 16.
Artículo en Inglés | MEDLINE | ID: mdl-39221955

RESUMEN

Human tumor samples hold a plethora of information about their microenvironment and immune repertoire. Effective dissociation of human tissue samples into viable cell suspensions is a required input for the single-cell RNA sequencing (scRNAseq) pipeline. Unlike bulk RNA sequencing approaches, scRNAseq enables us to infer the transcriptional heterogeneity in tumor specimens at the single-cell level. Incorporating this approach in recent years has led to many discoveries, such as identifying immune and tumor cellular states and programs associated with clinical responses to immunotherapies and other types of treatments. Moreover, single-cell technologies applied to dissociated tissues can be used to identify accessible chromatin regions T and B cell receptor repertoire, and the expression of proteins, using DNA barcoded antibodies (CITEseq). The viability and quality of the dissociated sample are critical variables when using these technologies, as these can dramatically affect the cross-contamination of single cells with ambient RNA, the quality of the data, and interpretation. Moreover, long dissociation protocols can lead to the elimination of sensitive cell populations and the upregulation of a stress response gene signature. To overcome these limitations, we devised a rapid universal dissociation protocol, which has been validated on multiple types of human and murine tumors. The process begins with mechanical and enzymatic dissociation, followed by filtration, red blood lysis, and live dead enrichment, suitable for samples with a low input of cells (e.g., needle core biopsies). This protocol ensures a clean and viable single-cell suspension paramount to the successful generation of Gel Bead-In Emulsions (GEMs), barcoding, and sequencing.


Asunto(s)
Análisis de Secuencia de ARN , Análisis de la Célula Individual , Humanos , Análisis de la Célula Individual/métodos , Ratones , Animales , Análisis de Secuencia de ARN/métodos , Neoplasias/genética
4.
bioRxiv ; 2024 Sep 06.
Artículo en Inglés | MEDLINE | ID: mdl-39282367

RESUMEN

The potent immunostimulatory effects of toll-like receptor 8 (TLR8) agonism in combination with PD-1 blockade have resulted in various preclinical investigations, yet the mechanism of action in humans remains unknown. To decipher the combinatory mode of action of TLR8 agonism and PD-1 blockade, we employed a unique, open-label, phase 1b pre-operative window of opportunity clinical trial (NCT03906526) in head and neck squamous cell carcinoma (HNSCC) patients. Matched pre- and post-treatment tumor biopsies from the same lesion were obtained. We used single-cell RNA sequencing and custom multiplex staining to leverage the unique advantage of same-lesion longitudinal sampling. Patients receiving dual TLR8 agonism and anti-PD-1 blockade exhibited marked upregulation of innate immune effector genes and cytokines, highlighted by increased CLEC9A+ dendritic cell and CLEC7A/SYK expression. This was revealed via comparison with a previous cohort from an anti-PD-1 blockade monotherapy single-cell RNA sequencing study. Furthermore, in dual therapy patients, post-treatment mature dendritic cells increased in adjacency to CD8+ T-cells. Increased tumoral cytotoxic T-lymphocyte densities and expanded CXCL13+CD8+ T-cell populations were observed in responders, with increased tertiary lymphoid structures (TLSs) across all three patients. This study provides key insights into the mode of action of TLR8 agonism and anti-PD-1 blockade immune targeting in HNSCC patients.

5.
medRxiv ; 2024 Sep 12.
Artículo en Inglés | MEDLINE | ID: mdl-39314968

RESUMEN

Immune checkpoint blockade (ICB) is the standard of care for recurrent/metastatic head and neck squamous cell carcinoma (HNSCC), yet efficacy remains low. The current approach for predicting the likelihood of response to ICB is a single proportional biomarker (PD-L1) expressed in immune and tumor cells (Combined Positive Score, CPS) without differentiation by cell type, potentially explaining its limited predictive value. Tertiary Lymphoid Structures (TLS) have shown a stronger association with ICB response than PD-L1. However, their exact composition, size, and spatial biology in HNSCC remain understudied. A detailed understanding of TLS is required for future use as a clinically applicable predictive biomarker. Methods: Pre-ICB tumor tissue sections were obtained from 9 responders (complete response, partial response, or stable disease) and 11 non-responders (progressive disease) classified via RECISTv1.1. A custom multi-immunofluorescence (mIF) staining assay was designed, optimized, and applied to characterize tumor cells (pan-cytokeratin), T cells (CD4, CD8), B cells (CD19, CD20), myeloid cells (CD16, CD56, CD163), dendritic cells (LAMP3), fibroblasts (α Smooth Muscle Actin), proliferative status (Ki67) and immunoregulatory molecules (PD1). Spatial metrics were compared among groups. Serial tissue sections were scored for TLS in both H&E and mIF slides. A machine learning model was employed to measure the effect of these metrics on achieving a response to ICB (SD, PR, or CR). Results: A higher density of B lymphocytes (CD20+) was found in responders compared to non-responders to ICB (p=0.022). A positive correlation was observed between mIF and pathologist identification of TLS (R 2 = 0.66, p-value= <0.0001). TLS trended toward being more prevalent in responders to ICB (p=0.0906). The presence of TLS within 100 µm of the tumor was associated with improved overall (p=0.04) and progression-free survival (p=0.03). A multivariate machine learning model identified TLS density as a leading predictor of response to ICB with 80% accuracy. Conclusion: Immune cell densities and TLS spatial location within the tumor microenvironment play a critical role in the immune response to HNSCC and may potentially outperform CPS as a predictor of ICB response.

6.
Nat Commun ; 15(1): 7357, 2024 Aug 27.
Artículo en Inglés | MEDLINE | ID: mdl-39191779

RESUMEN

Image-guided percutaneous cryoablation is an established minimally invasive oncologic treatment. We hypothesized that cryoablation may modify the immune microenvironment through direct modulation of the tumor, thereby generating an anti-tumor response in tumors refractory to immune checkpoint inhibition (ICI). In this non-randomized phase II single-center study (NCT03290677), subjects with unresectable melanoma progressing on ICI underwent cryoablation of an enlarging metastasis, and ICI was continued for a minimum of two additional cycles. The primary endpoints were safety, feasibility and tumor response in non-ablated lesions. From May 2018 through July 2020, 17 patients were treated on study. The study met its primary endpoints with the combination strategy found to be safe and feasible with an objective response rate of 23.5% and disease control rate of 41% (4 partial response, 3 stable disease). Our data support further study of this synergistic therapeutic approach.


Asunto(s)
Criocirugía , Inhibidores de Puntos de Control Inmunológico , Melanoma , Humanos , Melanoma/tratamiento farmacológico , Melanoma/patología , Melanoma/cirugía , Melanoma/inmunología , Inhibidores de Puntos de Control Inmunológico/uso terapéutico , Criocirugía/métodos , Femenino , Masculino , Persona de Mediana Edad , Anciano , Progresión de la Enfermedad , Adulto , Neoplasias Cutáneas/tratamiento farmacológico , Neoplasias Cutáneas/patología , Neoplasias Cutáneas/inmunología , Neoplasias Cutáneas/cirugía , Microambiente Tumoral/inmunología , Metástasis de la Neoplasia , Resultado del Tratamiento , Terapia Combinada , Anciano de 80 o más Años
7.
bioRxiv ; 2024 Apr 26.
Artículo en Inglés | MEDLINE | ID: mdl-38712250

RESUMEN

Mucosal melanoma (MM) is a deadly cancer derived from mucosal melanocytes. To test the consequences of MM genetics, we developed a zebrafish model in which all melanocytes experienced CCND1 expression and loss of PTEN and TP53. Surprisingly, melanoma only developed from melanocytes lining internal organs, analogous to the location of patient MM. We found that zebrafish MMs had a unique chromatin landscape from cutaneous melanoma. Internal melanocytes could be labeled using a MM-specific transcriptional enhancer. Normal zebrafish internal melanocytes shared a gene expression signature with MMs. Patient and zebrafish MMs have increased migratory neural crest gene and decreased antigen presentation gene expression, consistent with the increased metastatic behavior and decreased immunotherapy sensitivity of MM. Our work suggests the cell state of the originating melanocyte influences the behavior of derived melanomas. Our animal model phenotypically and transcriptionally mimics patient tumors, allowing this model to be used for MM therapeutic discovery.

8.
Nat Immunol ; 25(4): 644-658, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38503922

RESUMEN

The organization of immune cells in human tumors is not well understood. Immunogenic tumors harbor spatially localized multicellular 'immunity hubs' defined by expression of the T cell-attracting chemokines CXCL10/CXCL11 and abundant T cells. Here, we examined immunity hubs in human pre-immunotherapy lung cancer specimens and found an association with beneficial response to PD-1 blockade. Critically, we discovered the stem-immunity hub, a subtype of immunity hub strongly associated with favorable PD-1-blockade outcome. This hub is distinct from mature tertiary lymphoid structures and is enriched for stem-like TCF7+PD-1+CD8+ T cells, activated CCR7+LAMP3+ dendritic cells and CCL19+ fibroblasts as well as chemokines that organize these cells. Within the stem-immunity hub, we find preferential interactions between CXCL10+ macrophages and TCF7-CD8+ T cells as well as between mature regulatory dendritic cells and TCF7+CD4+ and regulatory T cells. These results provide a picture of the spatial organization of the human intratumoral immune response and its relevance to patient immunotherapy outcomes.


Asunto(s)
Neoplasias Pulmonares , Humanos , Linfocitos T CD8-positivos , Receptor de Muerte Celular Programada 1 , Quimiocinas/metabolismo , Inmunoterapia/métodos , Microambiente Tumoral
9.
bioRxiv ; 2024 Mar 26.
Artículo en Inglés | MEDLINE | ID: mdl-38405985

RESUMEN

A central problem in cancer immunotherapy with immune checkpoint blockade (ICB) is the development of resistance, which affects 50% of patients with metastatic melanoma1,2. T cell exhaustion, resulting from chronic antigen exposure in the tumour microenvironment, is a major driver of ICB resistance3. Here, we show that CD38, an ecto-enzyme involved in nicotinamide adenine dinucleotide (NAD+) catabolism, is highly expressed in exhausted CD8+ T cells in melanoma and is associated with ICB resistance. Tumour-derived CD38hiCD8+ T cells are dysfunctional, characterised by impaired proliferative capacity, effector function, and dysregulated mitochondrial bioenergetics. Genetic and pharmacological blockade of CD38 in murine and patient-derived organotypic tumour models (MDOTS/PDOTS) enhanced tumour immunity and overcame ICB resistance. Mechanistically, disrupting CD38 activity in T cells restored cellular NAD+ pools, improved mitochondrial function, increased proliferation, augmented effector function, and restored ICB sensitivity. Taken together, these data demonstrate a role for the CD38-NAD+ axis in promoting T cell exhaustion and ICB resistance, and establish the efficacy of CD38 directed therapeutic strategies to overcome ICB resistance using clinically relevant, patient-derived 3D tumour models.

10.
Nat Biotechnol ; 42(4): 582-586, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-37291427

RESUMEN

Full-length RNA-sequencing methods using long-read technologies can capture complete transcript isoforms, but their throughput is limited. We introduce multiplexed arrays isoform sequencing (MAS-ISO-seq), a technique for programmably concatenating complementary DNAs (cDNAs) into molecules optimal for long-read sequencing, increasing the throughput >15-fold to nearly 40 million cDNA reads per run on the Sequel IIe sequencer. When applied to single-cell RNA sequencing of tumor-infiltrating T cells, MAS-ISO-seq demonstrated a 12- to 32-fold increase in the discovery of differentially spliced genes.


Asunto(s)
Secuenciación de Nucleótidos de Alto Rendimiento , Isoformas de ARN , ADN Complementario/genética , Isoformas de ARN/genética , Secuenciación de Nucleótidos de Alto Rendimiento/métodos , Isoformas de Proteínas/genética , Análisis de Secuencia de ARN/métodos , Transcriptoma , Perfilación de la Expresión Génica/métodos , ARN/genética
11.
J Hepatol ; 80(2): 251-267, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-36972796

RESUMEN

BACKGROUND & AIMS: Chronic viral infections present serious public health challenges; however, direct-acting antivirals (DAAs) are now able to cure nearly all patients infected with hepatitis C virus (HCV), representing the only cure of a human chronic viral infection to date. DAAs provide a valuable opportunity to study immune pathways in the reversal of chronic immune failures in an in vivo human system. METHODS: To leverage this opportunity, we used plate-based single-cell RNA-seq to deeply profile myeloid cells from liver fine needle aspirates in patients with HCV before and after DAA treatment. We comprehensively characterised liver neutrophils, eosinophils, mast cells, conventional dendritic cells, plasmacytoid dendritic cells, classical monocytes, non-classical monocytes, and macrophages, and defined fine-grained subpopulations of several cell types. RESULTS: We discovered cell type-specific changes post-cure, including an increase in MCM7+STMN1+ proliferating CD1C+ conventional dendritic cells, which may support restoration from chronic exhaustion. We observed an expected downregulation of interferon-stimulated genes (ISGs) post-cure as well as an unexpected inverse relationship between pre-treatment viral load and post-cure ISG expression in each cell type, revealing a link between viral loads and sustained modifications of the host's immune system. We found an upregulation of PD-L1/L2 gene expression in ISG-high neutrophils and IDO1 expression in eosinophils, pinpointing cell subpopulations crucial for immune regulation. We identified three recurring gene programmes shared by multiple cell types, distilling core functions of the myeloid compartment. CONCLUSIONS: This comprehensive single-cell RNA-seq atlas of human liver myeloid cells in response to cure of chronic viral infections reveals principles of liver immunity and provides immunotherapeutic insights. CLINICAL TRIAL REGISTRATION: This study is registered at ClinicalTrials.gov (NCT02476617). IMPACT AND IMPLICATIONS: Chronic viral liver infections continue to be a major public health problem. Single-cell characterisation of liver immune cells during hepatitis C and post-cure provides unique insights into the architecture of liver immunity contributing to the resolution of the first curable chronic viral infection of humans. Multiple layers of innate immune regulation during chronic infections and persistent immune modifications after cure are revealed. Researchers and clinicians may leverage these findings to develop methods to optimise the post-cure environment for HCV and develop novel therapeutic approaches for other chronic viral infections.


Asunto(s)
Hepatitis C Crónica , Hepatitis C , Humanos , Antivirales/uso terapéutico , Infección Persistente , Hepatitis C/tratamiento farmacológico , Hepacivirus/genética
12.
Science ; 381(6657): 515-524, 2023 08 04.
Artículo en Inglés | MEDLINE | ID: mdl-37535729

RESUMEN

Tumor microenvironments (TMEs) influence cancer progression but are complex and often differ between patients. Considering that microenvironment variations may reveal rules governing intratumoral cellular programs and disease outcome, we focused on tumor-to-tumor variation to examine 52 head and neck squamous cell carcinomas. We found that macrophage polarity-defined by CXCL9 and SPP1 (CS) expression but not by conventional M1 and M2 markers-had a noticeably strong prognostic association. CS macrophage polarity also identified a highly coordinated network of either pro- or antitumor variables, which involved each tumor-associated cell type and was spatially organized. We extended these findings to other cancer indications. Overall, these results suggest that, despite their complexity, TMEs coordinate coherent responses that control human cancers and for which CS macrophage polarity is a relevant yet simple variable.


Asunto(s)
Polaridad Celular , Quimiocina CXCL9 , Neoplasias de Cabeza y Cuello , Macrófagos , Osteopontina , Carcinoma de Células Escamosas de Cabeza y Cuello , Microambiente Tumoral , Humanos , Quimiocina CXCL9/análisis , Quimiocina CXCL9/metabolismo , Neoplasias de Cabeza y Cuello/inmunología , Neoplasias de Cabeza y Cuello/patología , Macrófagos/inmunología , Osteopontina/análisis , Osteopontina/metabolismo , Pronóstico , Carcinoma de Células Escamosas de Cabeza y Cuello/inmunología , Carcinoma de Células Escamosas de Cabeza y Cuello/patología , Polaridad Celular/inmunología
13.
J Surg Educ ; 80(9): 1296-1301, 2023 09.
Artículo en Inglés | MEDLINE | ID: mdl-37423804

RESUMEN

OBJECTIVE: The Covid-19 pandemic resulted in a shift in communication of difficult, emotionally charged topics from almost entirely in-person to virtual mediated communication (VMC) methods due to restrictions on visitation for safety. The objective was to train residents in VMC and assess performance across multiple specialties and institutions. DESIGN: The authors designed a teaching program including asynchronous preparation with videos, case simulation experiences with standardized patients (SPs), and coaching from a trained faculty member. Three topics were included - breaking bad news (BBN), goals of care / health care decision making (GOC), and disclosure of medical error (DOME). A performance evaluation was created and used by the coaches and standardized patients to assess the learners. Trends in performance between simulations and sessions were assessed. SETTING: Four academic university hospitals - Virginia Commonwealth University Medical Center in Richmond, Virginia, The Ohio State University Wexner Medical Center in Columbus, Ohio, Baylor University Medical Center in Dallas, Texas and The University of Cincinnati in Cincinnati, Ohio- participated. PARTICIPANTS: Learners totaled 34 including 21 emergency medicine interns, 9 general surgery interns and 4 medical students entering surgical training. Learner participation was voluntary. Recruitment was done via emails sent by program directors and study coordinators. RESULTS: A statistically significant improvement in mean performance on the second compared to the first simulation was observed for teaching communication skills for BBN using VMC. There was also a small but statistically significant mean improvement in performance from the first to the second simulation for the training overall. CONCLUSIONS: This work suggests that a deliberate practice model can be effective for teaching VMC and that a performance evaluation can be used to measure improvement. Further study is needed to optimize the teaching and evaluation of these skills as well as to define minimal acceptable levels of competency.


Asunto(s)
COVID-19 , Medicina de Emergencia , Internado y Residencia , Humanos , Pandemias , COVID-19/epidemiología , Comunicación , Revelación de la Verdad , Relaciones Médico-Paciente
14.
bioRxiv ; 2023 Apr 06.
Artículo en Inglés | MEDLINE | ID: mdl-37066412

RESUMEN

The organization of immune cells in human tumors is not well understood. Immunogenic tumors harbor spatially-localized multicellular 'immunity hubs' defined by expression of the T cell-attracting chemokines CXCL10/CXCL11 and abundant T cells. Here, we examined immunity hubs in human pre-immunotherapy lung cancer specimens, and found that they were associated with beneficial responses to PD-1-blockade. Immunity hubs were enriched for many interferon-stimulated genes, T cells in multiple differentiation states, and CXCL9/10/11 + macrophages that preferentially interact with CD8 T cells. Critically, we discovered the stem-immunity hub, a subtype of immunity hub strongly associated with favorable PD-1-blockade outcomes, distinct from mature tertiary lymphoid structures, and enriched for stem-like TCF7+PD-1+ CD8 T cells and activated CCR7 + LAMP3 + dendritic cells, as well as chemokines that organize these cells. These results elucidate the spatial organization of the human intratumoral immune response and its relevance to patient immunotherapy outcomes.

15.
STAR Protoc ; 4(1): 102125, 2023 03 17.
Artículo en Inglés | MEDLINE | ID: mdl-36853705

RESUMEN

Although neutrophils are the most abundant leukocyte in healthy individuals and impact outcomes of diseases ranging from sepsis to cancer, they remain understudied due to technical constraints of isolation, preservation, and sequencing. We present a modified Smart-Seq2 protocol for bulk RNA sequencing of neutrophils enriched from whole blood. We describe steps for neutrophil isolation, cDNA generation, library preparation, and sample purity estimation via a bioinformatic approach. Our approach permits the collection of large cohorts and enables detection of neutrophil transcriptomic subtypes. For complete details on the use and execution of this protocol, please refer to LaSalle et al. (2022)1 and Boribong et al. (2022).2.


Asunto(s)
Neutrófilos , Sepsis , Humanos , Leucocitos , Secuencia de Bases , Análisis de Secuencia de ARN
16.
Nature ; 615(7950): 158-167, 2023 03.
Artículo en Inglés | MEDLINE | ID: mdl-36634707

RESUMEN

Despite the success of PD-1 blockade in melanoma and other cancers, effective treatment strategies to overcome resistance to cancer immunotherapy are lacking1,2. Here we identify the innate immune kinase TANK-binding kinase 1 (TBK1)3 as a candidate immune-evasion gene in a pooled genetic screen4. Using a suite of genetic and pharmacological tools across multiple experimental model systems, we confirm a role for TBK1 as an immune-evasion gene. Targeting TBK1 enhances responses to PD-1 blockade by decreasing the cytotoxicity threshold to effector cytokines (TNF and IFNγ). TBK1 inhibition in combination with PD-1 blockade also demonstrated efficacy using patient-derived tumour models, with concordant findings in matched patient-derived organotypic tumour spheroids and matched patient-derived organoids. Tumour cells lacking TBK1 are primed to undergo RIPK- and caspase-dependent cell death in response to TNF and IFNγ in a JAK-STAT-dependent manner. Taken together, our results demonstrate that targeting TBK1 is an effective strategy to overcome resistance to cancer immunotherapy.


Asunto(s)
Resistencia a Antineoplásicos , Evasión Inmune , Inmunoterapia , Proteínas Serina-Treonina Quinasas , Humanos , Evasión Inmune/genética , Evasión Inmune/inmunología , Inmunoterapia/métodos , Receptor de Muerte Celular Programada 1/antagonistas & inhibidores , Proteínas Serina-Treonina Quinasas/antagonistas & inhibidores , Proteínas Serina-Treonina Quinasas/genética , Organoides , Factores de Necrosis Tumoral/inmunología , Interferón gamma/inmunología , Esferoides Celulares , Caspasas , Quinasas Janus , Factores de Transcripción STAT
17.
Am Surg ; 89(3): 440-446, 2023 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-34228939

RESUMEN

BACKGROUND: The COVID-19 pandemic resulted in a sudden increase in the need to effectively use telehealth in all realms of health care communication, including the delivery of bad news. METHODS: A single arm, unblinded, feasibility study was performed at a tertiary care center located in Central Virginia to explore the value and utility of providing a telehealth training program based on SPIKES to teach surgical residents and faculty best practice for disclosing difficult news via video-mediated communication (VMC). Surgical interns (categorical and preliminary), surgical residents, and surgical faculty from General, Neuro, Pediatric, Plastics, Oncology, Urology, and Vascular surgical specialties were recruited via email to voluntarily participate in a telehealth simulation-based workshop, with 33 surgical learners participating in the training and 28 completing evaluation surveys. RESULTS: Only six respondents (22%) indicated they had prior formal training on telehealth communication with patients or families, while 13 (46%) said they had prior experience giving bad news via telehealth. Comments about improving the training focused on providing more scenarios to practice and more time for feedback. Overall, 25 learners (86%) agreed the activity was a valuable learning experience and the majority (61%) of responses were positive for future use of telehealth for breaking bad news. DISCUSSION: Practicing communication skills with VMC was found to be valuable by surgical interns, residents, and faculty. Formal training should be provided for surgeons at every stage of training and practice to improve skill in the delivery of bad news to patients and their families.


Asunto(s)
COVID-19 , Internado y Residencia , Cirujanos , Telemedicina , Humanos , Niño , Relaciones Médico-Paciente , Pandemias , Comunicación
18.
Cell Rep Med ; 3(12): 100848, 2022 12 20.
Artículo en Inglés | MEDLINE | ID: mdl-36476388

RESUMEN

Multisystem inflammatory syndrome in children (MIS-C) is a delayed-onset, COVID-19-related hyperinflammatory illness characterized by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) antigenemia, cytokine storm, and immune dysregulation. In severe COVID-19, neutrophil activation is central to hyperinflammatory complications, yet the role of neutrophils in MIS-C is undefined. Here, we collect blood from 152 children: 31 cases of MIS-C, 43 cases of acute pediatric COVID-19, and 78 pediatric controls. We find that MIS-C neutrophils display a granulocytic myeloid-derived suppressor cell (G-MDSC) signature with highly altered metabolism that is distinct from the neutrophil interferon-stimulated gene (ISG) response we observe in pediatric COVID-19. Moreover, we observe extensive spontaneous neutrophil extracellular trap (NET) formation in MIS-C, and we identify neutrophil activation and degranulation signatures. Mechanistically, we determine that SARS-CoV-2 immune complexes are sufficient to trigger NETosis. Our findings suggest that hyperinflammatory presentation during MIS-C could be mechanistically linked to persistent SARS-CoV-2 antigenemia, driven by uncontrolled neutrophil activation and NET release in the vasculature.


Asunto(s)
COVID-19 , Neutrófilos , Humanos , Niño , SARS-CoV-2 , Síndrome de Respuesta Inflamatoria Sistémica/diagnóstico
19.
NPJ Precis Oncol ; 6(1): 71, 2022 Oct 10.
Artículo en Inglés | MEDLINE | ID: mdl-36210388

RESUMEN

Head and Neck Squamous Cell Carcinoma (HNSCC) is an aggressive epithelial cancer with poor overall response rates to checkpoint inhibitor therapy (CPI) despite CPI being the recommended treatment for recurrent or metastatic HNSCC. Mechanisms of resistance to CPI in HNSCC are poorly understood. To identify drivers of response and resistance to CPI in a unique patient who was believed to have developed three separate HNSCCs, we performed single-cell RNA-seq (scRNA-seq) profiling of two responding lesions and one progressive lesion that developed during CPI. Our results not only suggest interferon-induced APOBEC3-mediated acquired resistance as a mechanism of CPI resistance in the progressing lesion but further, that the lesion in question was actually a metastasis as opposed to a new primary tumor, highlighting the immense power of scRNA-seq as a clinical tool for inferring tumor origin and mechanisms of therapeutic resistance.

20.
Cell Rep Med ; 3(10): 100779, 2022 10 18.
Artículo en Inglés | MEDLINE | ID: mdl-36208629

RESUMEN

Mechanisms of neutrophil involvement in severe coronavirus disease 2019 (COVID-19) remain incompletely understood. Here, we collect longitudinal blood samples from 306 hospitalized COVID-19+ patients and 86 controls and perform bulk RNA sequencing of enriched neutrophils, plasma proteomics, and high-throughput antibody profiling to investigate relationships between neutrophil states and disease severity. We identify dynamic switches between six distinct neutrophil subtypes. At days 3 and 7 post-hospitalization, patients with severe disease display a granulocytic myeloid-derived suppressor cell-like gene expression signature, while patients with resolving disease show a neutrophil progenitor-like signature. Humoral responses are identified as potential drivers of neutrophil effector functions, with elevated severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2)-specific immunoglobulin G1 (IgG1)-to-IgA1 ratios in plasma of severe patients who survived. In vitro experiments confirm that while patient-derived IgG antibodies induce phagocytosis in healthy donor neutrophils, IgA antibodies predominantly induce neutrophil cell death. Overall, our study demonstrates a dysregulated myelopoietic response in severe COVID-19 and a potential role for IgA-dominant responses contributing to mortality.


Asunto(s)
COVID-19 , Humanos , SARS-CoV-2 , Neutrófilos , Inmunoglobulina A , Inmunoglobulina G , Fenotipo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...