Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 69
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
J Neuromuscul Dis ; 2024 Jun 12.
Artículo en Inglés | MEDLINE | ID: mdl-38875046

RESUMEN

Background: GNE Myopathy is a unique recessive neuromuscular disorder characterized by adult-onset, slowly progressive distal and proximal muscle weakness, caused by mutations in the GNE gene which is a key enzyme in the biosynthesis of sialic acid. To date, the precise pathophysiology of the disease is not well understood and no reliable animal model is available. Gne KO is embryonically lethal in mice. Objective: To gain insights into GNE function in muscle, we have generated an inducible muscle Gne KO mouse. To minimize the contribution of the liver to the availability of sialic acid to muscle via the serum, we have also induced combined Gne KO in liver and muscle. Methods: A mouse carrying loxp sequences flanking Gne exon3 was generated by Crispr/Cas9 and bred with a human skeletal actin (HSA) promoter driven CreERT mouse. Gne muscle knock out was induced by tamoxifen injection of the resulting homozygote GneloxpEx3loxp/HSA Cre mouse. Liver Gne KO was induced by systemic injection of AAV8 vectors carrying the Cre gene driven by the hepatic specific promoter of the thyroxine binding globulin gene. Results: Characterization of these mice for a 12 months period showed no significant changes in their general behaviour, motor performance, muscle mass and structure in spite of a dramatic reduction in sialic acid content in both muscle and liver. Conclusions: We conclude that post weaning lack of Gne and sialic acid in muscle and liver have no pathologic effect in adult mice. These findings could reflect a strong interspecies versatility, but also raise questions about the loss of function hypothesis in Gne Myopathy. If these findings apply to humans they have a major impact on therapeutic strategies.

2.
JBJS Case Connect ; 14(1)2024 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-38207087

RESUMEN

CASES: We present 2 cases of median nerve reconstruction using distal nerve transfers after resection of unusual benign median nerve tumors. Critical sensation was restored in case 1 by transferring the fourth common digital nerve to first web digital nerves. Thumb opposition was regained by transferring the abductor digiti minimi ulnar motor nerve branch to the recurrent median motor nerve branch. Critical sensation was restored in case 2 by transferring the long finger ulnar digital nerve to the index finger radial digital nerve. CONCLUSION: Distal nerve transfers, even with short grafts, are reliable median nerve deficit treatments, sparing the need for larger autologous nerve grafts and late tendon opponensplasties.


Asunto(s)
Nervio Mediano , Transferencia de Nervios , Humanos , Nervio Mediano/cirugía , Dedos/cirugía , Dedos/inervación , Nervio Cubital/cirugía , Nervio Radial/cirugía
3.
J Neuroinflammation ; 20(1): 245, 2023 Oct 24.
Artículo en Inglés | MEDLINE | ID: mdl-37875972

RESUMEN

BACKGROUND: Homozygous CD59-deficient patients manifest with recurrent peripheral neuropathy resembling Guillain-Barré syndrome (GBS), hemolytic anemia and recurrent strokes. Variable mutations in CD59 leading to loss of function have been described and, overall, 17/18 of patients with any mutation presented with recurrent GBS. Here we determine the localization and possible role of membrane-bound complement regulators, including CD59, in the peripheral nervous systems (PNS) of mice and humans. METHODS: We examined the localization of membrane-bound complement regulators in the peripheral nerves of healthy humans and a CD59-deficient patient, as well as in wild-type (WT) and CD59a-deficient mice. Cross sections of teased sciatic nerves and myelinating dorsal root ganglia (DRG) neuron/Schwann cell cultures were examined by confocal and electron microscopy. RESULTS: We demonstrate that CD59a-deficient mice display normal peripheral nerve morphology but develop myelin abnormalities in older age. They normally express myelin protein zero (P0), ankyrin G (AnkG), Caspr, dystroglycan, and neurofascin. Immunolabeling of WT nerves using antibodies to CD59 and myelin basic protein (MBP), P0, and AnkG revealed that CD59 was localized along the internode but was absent from the nodes of Ranvier. CD59 was also detected in blood vessels within the nerve. Finally, we show that the nodes of Ranvier lack other complement-membrane regulatory proteins, including CD46, CD55, CD35, and CR1-related gene-y (Crry), rendering this area highly exposed to complement attack. CONCLUSION: The Nodes of Ranvier lack CD59 and are hence not protected from complement terminal attack. The myelin unit in human PNS is protected by CD59 and CD55, but not by CD46 or CD35. This renders the nodes and myelin in the PNS vulnerable to complement attack and demyelination in autoinflammatory Guillain-Barré syndrome, as seen in CD59 deficiency.


Asunto(s)
Síndrome de Guillain-Barré , Proteínas de la Membrana , Ratones , Humanos , Animales , Nódulos de Ranvier , Proteínas del Sistema Complemento , Antígenos CD59/genética , Antígenos CD55/genética
4.
JACC Case Rep ; 4(21): 1449-1452, 2022 Nov 02.
Artículo en Inglés | MEDLINE | ID: mdl-36388708

RESUMEN

Colchicine is commonly used as part of the treatment of acute and recurrent pericarditis. Neuromyopathy is a well-known, but probably underreported, side effect of colchicine. Here we present a unique case of a 56-year-old woman with recurrent episodes of colchicine-induced neuromyopathy over many years. (Level of Difficulty: Beginner.).

5.
Mol Diagn Ther ; 26(5): 561-568, 2022 09.
Artículo en Inglés | MEDLINE | ID: mdl-35796944

RESUMEN

INTRODUCTION: Congenital myopathies are a broad group of inborn muscle disorders caused by a multitude of genetic factors, often characterized by muscle atrophy and hypotonia. METHODS: Clinical studies, imaging, histology, whole-exome sequencing (WES) and muscle tissue RNA studies. RESULTS: We describe a severe congenital myopathy manifesting at birth with bilateral clubfeet, delayed motor development and hypotonia, becoming evident by 4 months of age. At 3 years of age, the patient had tongue fasciculations, was bedridden, and was chronically ventilated via tracheostomy. Imaging studies demonstrated severe muscle atrophy and, surprisingly, cerebral atrophy; electromyography demonstrated a myasthenic pattern and histological evaluation did not facilitate a definitive diagnosis. Trio WES did not identify a causative variant, except for a non-canonical intronic TPM3 c.118-12G>A variant of uncertain significance. Transcript analysis of muscle tissue from the patient proved the pathogenicity of this homozygous variant, with a 97% reduction in the muscle-specific TPM3.12 transcript. DISCUSSION: This study broadens the phenotypic spectrum of recessive TPM3 disease, highlighting tongue fasciculations and bilateral clubfoot, as well as possibly-related cerebral atrophy. It also shows the importance of a broad approach to genetic analysis and the utility of RNA-based studies, demonstrating efficacy of early genome and transcriptome queries in facilitating rapid and cost-effective diagnosis of congenital myopathies.


Asunto(s)
Hipotonía Muscular , Enfermedades Musculares , Fasciculación , Humanos , Atrofia Muscular , Mutación , Fenotipo , ARN , Tropomiosina/genética
6.
Ann Neurol ; 92(2): 304-321, 2022 08.
Artículo en Inglés | MEDLINE | ID: mdl-35471564

RESUMEN

OBJECTIVE: Human genomics established that pathogenic variation in diverse genes can underlie a single disorder. For example, hereditary spastic paraplegia is associated with >80 genes, with frequently only few affected individuals described for each gene. Herein, we characterize a large cohort of individuals with biallelic variation in ENTPD1, a gene previously linked to spastic paraplegia 64 (Mendelian Inheritance in Man # 615683). METHODS: Individuals with biallelic ENTPD1 variants were recruited worldwide. Deep phenotyping and molecular characterization were performed. RESULTS: A total of 27 individuals from 17 unrelated families were studied; additional phenotypic information was collected from published cases. Twelve novel pathogenic ENTPD1 variants are described (NM 001776.6): c.398_399delinsAA; p.(Gly133Glu), c.540del; p.(Thr181Leufs*18), c.640del; p.(Gly216Glufs*75), c.185 T > G; p.(Leu62*), c.1531 T > C; p.(*511Glnext*100), c.967C > T; p.(Gln323*), c.414-2_414-1del, and c.146 A > G; p.(Tyr49Cys) including 4 recurrent variants c.1109 T > A; p.(Leu370*), c.574-6_574-3del, c.770_771del; p.(Gly257Glufs*18), and c.1041del; p.(Ile348Phefs*19). Shared disease traits include childhood onset, progressive spastic paraplegia, intellectual disability (ID), dysarthria, and white matter abnormalities. In vitro assays demonstrate that ENTPD1 expression and function are impaired and that c.574-6_574-3del causes exon skipping. Global metabolomics demonstrate ENTPD1 deficiency leads to impaired nucleotide, lipid, and energy metabolism. INTERPRETATION: The ENTPD1 locus trait consists of childhood disease onset, ID, progressive spastic paraparesis, dysarthria, dysmorphisms, and white matter abnormalities, with some individuals showing neurocognitive regression. Investigation of an allelic series of ENTPD1 (1) expands previously described features of ENTPD1-related neurological disease, (2) highlights the importance of genotype-driven deep phenotyping, (3) documents the need for global collaborative efforts to characterize rare autosomal recessive disease traits, and (4) provides insights into disease trait neurobiology. ANN NEUROL 2022;92:304-321.


Asunto(s)
Apirasa , Discapacidad Intelectual , Paraplejía Espástica Hereditaria , Sustancia Blanca , Apirasa/genética , Disartria , Humanos , Discapacidad Intelectual/genética , Mutación/genética , Paraplejía/genética , Linaje , Fenotipo , Paraplejía Espástica Hereditaria/genética , Sustancia Blanca/diagnóstico por imagen , Sustancia Blanca/patología
7.
Eur J Neurol ; 29(4): 1174-1180, 2022 04.
Artículo en Inglés | MEDLINE | ID: mdl-34935254

RESUMEN

BACKGROUND AND PURPOSE: Muscular A-type lamin-interacting protein (MLIP) is most abundantly expressed in cardiac and skeletal muscle. In vitro and animal studies have shown its regulatory role in myoblast differentiation and in organization of myonuclear positioning in skeletal muscle, as well as in cardiomyocyte adaptation and cardiomyopathy. We report the association of biallelic truncating variation in the MLIP gene with human disease in five individuals from two unrelated pedigrees. METHODS: Clinical evaluation and exome sequencing were performed in two unrelated families with elevated creatine kinase level. RESULTS: Family 1. A 6-year-old girl born to consanguineous parents of Arab-Muslim origin presented with myalgia, early fatigue after mild-to-moderate physical exertion, and elevated creatine kinase levels up to 16,000 U/L. Exome sequencing revealed a novel homozygous nonsense variant, c.2530C>T; p.Arg844Ter, in the MLIP gene. Family 2. Three individuals from two distantly related families of Old Order Amish ancestry presented with elevated creatine kinase levels, one of whom also presented with abnormal electrocardiography results. On exome sequencing, all showed homozygosity for a novel nonsense MLIP variant c.1825A>T; p.Lys609Ter. Another individual from this pedigree, who had sinus arrhythmia and for whom creatine kinase level was not available, was also homozygous for this variant. CONCLUSIONS: Our findings suggest that biallelic truncating variants in MLIP result in myopathy characterized by hyperCKemia. Moreover, these cases of MLIP-related disease may indicate that at least in some instances this condition is associated with muscle decompensation and fatigability during low-to-moderate intensity muscle exertion as well as possible cardiac involvement.


Asunto(s)
Cardiomiopatías , Enfermedades Musculares , Adaptación Fisiológica , Animales , Humanos , Enfermedades Musculares/genética , Mialgia , Linaje
8.
Mol Genet Genomic Med ; 10(1): e1849, 2022 01.
Artículo en Inglés | MEDLINE | ID: mdl-34970863

RESUMEN

BACKGROUND: We aimed to determine the molecular and biochemical basis of an extended highly consanguineous family with multiple children presenting severe congenital hypotonia. METHODS: Clinical investigations, homozygosity mapping, linkage analyses and whole exome sequencing, were performed. mRNA and protein levels were determined. Population screening was followed. RESULTS: We have identified a novel nonsense variant in NGLY1 in two affected siblings, and compound heterozygosity for three novel RYR1 variants in two affected sisters from another nuclear family within the broad pedigree. Population screening revealed a high prevalence of carriers for both diseases. The genetic variants were proven to be pathogenic, as demonstrated by western blot analyses. CONCLUSIONS: Revealing the genetic diagnosis enabled us to provide credible genetic counselling and pre-natal diagnosis to the extended family and genetic screening for this high-risk population. Whole exome/genome sequencing should be the first tier tool for accurate determination of the genetic basis of congenital hypotonia. Two different genetic disorders within a large consanguineous pedigree should be always considered.


Asunto(s)
Hipotonía Muscular , Enfermedades Musculares , Niño , Consanguinidad , Exoma , Familia , Humanos , Hipotonía Muscular/genética , Enfermedades Musculares/genética , Linaje
9.
J Neuromuscul Dis ; 9(1): 179-192, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-34806613

RESUMEN

BACKGROUND: GNE myopathy is a unique adult onset rare neuromuscular disease caused by recessive mutations in the GNE gene. The pathophysiological mechanism of this disorder is not well understood and to date, there is no available therapy for this debilitating disease. We have previously established proof of concept that AAV based gene therapy can effectively deliver the wild type human GNE into cultured muscle cells from human patients and in mice, using a CMV promoter driven human wild type GNE plasmid delivered through an adeno associated virus (AAV8) based platform. OBJECTIVE: In the present study we have generated a muscle specific GNE construct, driven by the MCK promoter and packaged with the AAVrh74 serotype for efficacy evaluation in an animal model of GNE Myopathy. METHODS: The viral vector was systemically delivered at 2 doses to two age groups of a Gne-/- hGNED207V Tg mouse described as a preclinical model of GNE Myopathy, and treatment was monitored for long term efficacy. RESULTS: In spite of the fact that the full described characteristics of the preclinical model could not be reproduced, the systemic injection of the rAAVrh74.MCK.GNE viral vector resulted in a long term presence and expression of human wt GNE in the murine muscles and in some improvements of their mild phenotype. The Gne-/- hGNED207V Tg mice are smaller from birth, but cannot be differentiated from littermates by muscle function (grip strength and Rotarod) and their muscle histology is normal, even at advanced age. CONCLUSIONS: The rAAVrh74.MCK.GNE vector is a robust tool for the development of GNE Myopathy therapies that supply the intact GNE. However, there is still no reliable animal model to fully assess its efficacy since the previously developed Gne-/- hGNED207V Tg mice do not present disease characteristics.


Asunto(s)
Terapia Genética/métodos , Complejos Multienzimáticos/genética , Enfermedades Musculares/genética , Enfermedades Musculares/terapia , Animales , Dependovirus , Modelos Animales de Enfermedad , Humanos , Ratones , Ratones Transgénicos , Enfermedades Musculares/fisiopatología
10.
Mol Pharm ; 18(6): 2263-2273, 2021 06 07.
Artículo en Inglés | MEDLINE | ID: mdl-34008992

RESUMEN

Our goal was to measure the absolute differential abundance of key drug transporters in human epileptogenic brain tissue and to compare them between patients and at various distances from the epileptogenic zone within the same patient. Transporter protein abundance was quantified in brain tissue homogenates from patients who underwent epilepsy surgery, using targeted proteomics, and correlations with clinical and tissue characteristics were assessed. Fourteen brain samples (including four epileptogenic hippocampal samples) were collected from nine patients. Among the quantifiable drug transporters, the abundance (median, range) ranked: breast cancer resistance protein (ABCG2/BCRP; 0.55, 0.01-3.26 pmol/g tissue) > P-glycoprotein (ABCB1/MDR1; 0.30, 0.02-1.15 pmol/g tissue) > equilibrative nucleoside transporter 1 (SLC29A1/ENT1; 0.06, 0.001-0.35 pmol/g tissue). The ABCB1/ABCG2 ratio (mean 0.27, range 0.08-0.47) was comparable with literature values from nonepileptogenic brain tissue (mean 0.5-0.8). Transporter abundance was lower in the hippocampi than in the less epileptogenic neocortex of the same patients. ABCG2/BCRP and ABCB1/MDR1 expression strongly correlated with that of glucose transporter 1 (SLC2A1/GLUT1) (r = 0.97, p < 0.001; r = 0.90, p < 0.01, respectively). Low transporter abundance was found in patients with overt vascular pathology, whereas the highest abundance was seen in a sample with normally appearing blood vessels. In conclusion, drug transporter abundance highly varies across patients and between epileptogenic and less epileptogenic brain tissue of the same patient. The strong correlation in abundance of ABCB1/MDR1, ABCG2/BCRP, and SLC2A1/GLUT1 suggests variation in the content of the functional vasculature within the tissue samples. The epileptogenic tissue can be depleted of key drug transport mechanisms, warranting consideration when selecting treatments for patients with drug-resistant epilepsy.


Asunto(s)
Transportador de Casetes de Unión a ATP, Subfamilia G, Miembro 2/metabolismo , Anticonvulsivantes/farmacocinética , Epilepsia Refractaria/tratamiento farmacológico , Hipocampo/patología , Proteínas de Neoplasias/metabolismo , Subfamilia B de Transportador de Casetes de Unión a ATP/análisis , Subfamilia B de Transportador de Casetes de Unión a ATP/metabolismo , Transportador de Casetes de Unión a ATP, Subfamilia G, Miembro 2/análisis , Adolescente , Adulto , Anticonvulsivantes/uso terapéutico , Epilepsia Refractaria/patología , Epilepsia Refractaria/cirugía , Femenino , Hipocampo/metabolismo , Hipocampo/cirugía , Humanos , Masculino , Proteínas de Neoplasias/análisis , Adulto Joven
11.
Neurogenetics ; 22(2): 117-125, 2021 05.
Artículo en Inglés | MEDLINE | ID: mdl-33811585

RESUMEN

We report a multiplex family with extended multisystem neurological phenotype associated with a CRYAB variant. Two affected siblings were evaluated with whole exome sequencing, muscle biopsy, laser microdissection, and mass spectrometry-based proteomic analysis. Both patients and their mother manifested a combination of early-onset cataracts, cardiomyopathy, cerebellar ataxia, optic atrophy, cognitive impairment, and myopathy. Whole exome sequencing identified a heterozygous c.458C>T variant mapped to the C-terminal extension domain of the Alpha-crystallin B chain, disrupting its function as a molecular chaperone and its ability to suppress protein aggregation. In accordance with the molecular findings, muscle biopsies revealed subsarcolemmal deposits that appeared dark with H&E and trichrome staining were negative for the other routine histochemical staining and for amyloid with the Congo-red stain. Electron microscopy demonstrated that the deposits were composed of numerous parallel fibrils. Laser microdissection and mass spectrometry-based proteomic analysis revealed that the inclusions are almost exclusively composed of crystallized chaperones/heat shock proteins. Moreover,  a structural model suggests that Ser153 could be involved in monomer stabilization, dimer association, and possible binding of partner proteins. We propose that our report potentially expands the complex phenotypic spectrum of alpha B-crystallinopathies with possible effect of a CRYAB variant on the central nervous system.


Asunto(s)
Cardiomiopatía Hipertrófica/genética , Catarata/genética , Ataxia Cerebelosa/genética , Disfunción Cognitiva/genética , Atrofia Óptica/genética , Sarcolema/ultraestructura , Cadena B de alfa-Cristalina/genética , Secuencia de Aminoácidos , Biopsia , Muerte Súbita Cardíaca/etiología , Femenino , Humanos , Cuerpos de Inclusión/ultraestructura , Judíos/genética , Masculino , Persona de Mediana Edad , Modelos Moleculares , Debilidad Muscular/genética , Músculo Esquelético/patología , Fenotipo , Conformación Proteica , Secuenciación del Exoma
12.
Oncology ; 99(7): 464-470, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33789303

RESUMEN

INTRODUCTION: Immune-checkpoint inhibitors have demonstrated a significant survival benefit in metastatic and non-resectable head and neck squamous cell carcinoma (HNSCC). Patients with a combined positivity score (CPS) of 20 and higher benefit the most from therapy. Inaccurate definition of the CPS category might lead to the incorrect stratification of patients to immunotherapy. This study's main aim was to investigate programmed death-ligand 1 (PD-L1) antigen expression in HNSCC in diverse clinical situations and histological settings. MATERIALS AND METHODS: This is a prospective cohort study conducted in a tertiary referral medical center. Tissues were investigated for PD-L1 expression using the FDA-approved 22C3 immunohistochemistry assay (Dako). We analyzed potential associations between the CPS category and meaningful demographic, clinical, and outcome metrics. Furthermore, we investigated morphologically separate sites for CPS scores in whole surgical tissue specimens and matched preoperative biopsies. RESULTS: We analyzed 36 patients, of whom 26 had oral cavity SCC and 10 had laryngeal SCC. The overall, disease-specific, and progression-free survival of the HNSCC group of patients were not associated with the CPS category (p = 0.45, p = 0.31, and p = 0.88, respectively). There was a significant (18%, 95% CI 0.65-0.9) inconsistency between the CPS category determined in biopsies versus whole carcinoma analyses. We also found an uneven distribution of whole-tumor CPS attributed to spatial carcinoma invasiveness, tumor differentiation, and inflammatory cell infiltration heterogeneity. DISCUSSION AND CONCLUSIONS: Our data suggest that careful selection of tumor area for CPS analysis is important. PD-L1 antigen expression, clinically represented by CPS, may be up- or down-categorized in different clinical and pathological circumstances. The high whole-tissue CPS category scatter may clinically result in potential treatment modifications. We argue that CPS analysis requires not only adequacy (at least 100 viable tumor cells), but also correct representation of the tumor microenvironment.


Asunto(s)
Antígeno B7-H1/metabolismo , Neoplasias de Cabeza y Cuello/metabolismo , Carcinoma de Células Escamosas de Cabeza y Cuello/metabolismo , Anciano , Biomarcadores de Tumor/metabolismo , Biopsia , Femenino , Neoplasias de Cabeza y Cuello/patología , Neoplasias de Cabeza y Cuello/cirugía , Humanos , Inmunohistoquímica , Masculino , Persona de Mediana Edad , Supervivencia sin Progresión , Estudios Prospectivos , Carcinoma de Células Escamosas de Cabeza y Cuello/patología , Carcinoma de Células Escamosas de Cabeza y Cuello/cirugía , Microambiente Tumoral
13.
Pharmaceutics ; 13(2)2021 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-33535418

RESUMEN

We previously reported the development of a novel formulation of an ultra-long-acting local anesthetic based on bupivacaine encapsulated in large multivesicular liposomes (Bupisomes) embedded in hydrogel. This formulation (Bupigel) prolonged bupivacaine release from the formulation in dissolution-like studies in vitro and analgesia in vivo in mouse, rat, and pig models. In this study we assessed Bupigel neurotoxicity on rabbit sciatic nerve using histopathology and electrophysiologic testing. Sciatic nerves of both hind limbs were injected dropwise with different formulations. Nerve conduction studies and needle electromyography two weeks after perineural administration showed signs of neural damage after injection of free lidocaine and bupivacaine, while there was no sign of neural damage after injection with saline, demonstrating the validity of the method. This test also did not show evidence of motor or sensory nerve damage after injection with liposomal bupivacaine at a dose 10-times higher than free bupivacaine. Histologically, signs of neural damage could be observed with lidocaine. Nerves injected with Bupigel showed mild signs of inflammation and small residues of hydrogel in granulomas, indicating a long residence time of the hydrogel at the site of injection, but no histopathological signs of nerve damage. This demonstrated that early signs of neural damage were detected electrophysiologically, showing the usefulness and sensitivity of electrodiagnostic testing in detection of neural damage from new formulations.

14.
J Hum Genet ; 66(8): 835-840, 2021 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-33612823

RESUMEN

MSTO1 is a cytoplasmic protein that modulates mitochondrial dynamics by promoting mitochondrial fusion. Mutations in the MSTO1 gene are responsible for an extremely rare condition characterized by early-onset myopathy and cerebellar ataxia. We report here two siblings from a large Ashkenazi Jewish family, presenting with a progressive neuromuscular disease characterized by ataxia and myopathy. By whole exome sequencing, we found a novel homozygous missense mutation (c.1403T>A, p.Leu468Gln) in MSTO1. Studies performed on fibroblasts from the index patient demonstrated the pathogenic role of the identified variant; we found that MSTO1 protein level was reduced and that mitochondrial network was fragmented or formed enlarged structures. Moreover, patient's cells showed reduced mitochondrial DNA amount. Our report confirms that MSTO1 mutations are typically recessive, and associated with clinical phenotypes characterized by early-onset muscle impairment and ataxia, often with upper motor neuron signs and varied cognitive impairment.


Asunto(s)
Ataxia/genética , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , Proteínas del Citoesqueleto/genética , Proteínas del Citoesqueleto/metabolismo , ADN Mitocondrial/metabolismo , Mitocondrias/genética , Mitocondrias/metabolismo , Enfermedades Musculares/genética , Adulto , Femenino , Fibroblastos/metabolismo , Homocigoto , Humanos , Judíos/genética , Mutación Missense , Linaje , Fenotipo , Hermanos , Secuenciación del Exoma , Adulto Joven
15.
J Clin Neurosci ; 78: 387-388, 2020 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-32741567

RESUMEN

Sarcoidosis is uncommon multiple organ granulomatous disease of unknown etiology. Neurosarcoidosis occurs in about 5% of cases and most frequently follows systemic disease. We present a case of 52 -years -old woman with a progressive hemifacial paresthesia and multiple enhancing dural based lesions. Resection of the right frontal mass allowed for the diagnosis to be made. The patient had no other features of sarcoidosis. Therefore, the diagnosis of neurosarcoidosis, especially when unaccompanied by systemic features can be challenging but should be considered in the differential diagnosis of multiple enhancing dural based tumours.


Asunto(s)
Enfermedades del Sistema Nervioso Central/diagnóstico , Cara/patología , Sarcoidosis/diagnóstico , Diagnóstico Diferencial , Cara/cirugía , Femenino , Granuloma/diagnóstico , Humanos , Hipoestesia/diagnóstico , Hipoestesia/etiología , Imagen por Resonancia Magnética , Persona de Mediana Edad , Neoplasias/diagnóstico , Parestesia/etiología
16.
Int J Mol Sci ; 21(12)2020 Jun 25.
Artículo en Inglés | MEDLINE | ID: mdl-32630425

RESUMEN

Duchenne muscular dystrophy (DMD) is a severe muscle wasting disease typically caused by protein-truncating mutations that preclude synthesis of a functional dystrophin. Exonic deletions are the most common type of DMD lesion, however, whole exon duplications account for between 10-15% of all reported mutations. Here, we describe in vitro evaluation of antisense oligonucleotide-induced splice switching strategies to re-frame the transcript disrupted by a multi-exon duplication within the DMD gene. Phosphorodiamidate morpholino oligomers and phosphorodiamidate morpholino oligomers coupled to a cell penetrating peptide were evaluated in a Duchenne muscular dystrophy patient cell strain carrying an exon 14-17 duplication. Two strategies were employed; the conventional approach was to remove both copies of exon 17 in addition to exon 18, and the second strategy was to remove only the first copy of exon 17. Both approaches result in a larger than normal but in-frame DMD transcript, but surprisingly, the removal of only the first exon 17 appeared to be more efficient in restoring dystrophin, as determined using western blotting. The emergence of a normal sized DMD mRNA transcript that was not apparent in untreated samples may have arisen from back splicing and could also account for some of the dystrophin protein being produced.


Asunto(s)
Distrofina/genética , Exones/genética , Terapia Genética/métodos , Células Cultivadas , Distrofina/metabolismo , Humanos , Mutación INDEL/genética , Músculo Esquelético/metabolismo , Distrofia Muscular de Duchenne/genética , Oligonucleótidos/metabolismo , Oligonucleótidos Antisentido/metabolismo , Empalme del ARN/genética , Empalme del ARN/fisiología
17.
J Pediatr Genet ; 9(2): 121-124, 2020 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-32341817

RESUMEN

Mutations in the ryanodine receptor-1 ( RYR1 ) may cause disorders inherited in an autosomal dominant/recessive fashion. Sequencing of RYR1 in an infant of Ashkenazi Jewish descent with severe hypotonia, dislocation of hip, torticollis and scoliosis, and paternal family history of autosomal dominant mild disease. The child was compound heterozygote for a missense variant c.7042G > A inherited from her father associated with autosomal dominant disease, and a missense variant of unknown significance c.5309C > T inherited from an asymptomatic mother. This case raises the possibility of a dominant disease complicated by a second variant in the other allele serving as a modifier.

18.
Clin Neurophysiol ; 130(10): 1988-1994, 2019 10.
Artículo en Inglés | MEDLINE | ID: mdl-31476705

RESUMEN

OBJECTIVE: Glatiramer acetate (GA), an agent modulating the immune system, has been shown to cause significantly improved mobility and hind limb muscle strength in the dy2J/dy2J mouse model for LAMA2-congenital muscular dystrophy (LAMA2-CMD). In view of these findings and the prominent peripheral nervous system involvement in this laminin-α2 disorder we evaluated GA's effect on dy2J/dy2J motor nerve conduction electrophysiologically. METHODS: Left sciatic-tibial motor nerve conduction studies were performed on wild type (WT) mice (n = 10), control dy2J/dy2J mice (n = 11), and GA treated dy2J/dy2J mice (n = 10) at 18 weeks of age. RESULTS: Control dy2J/dy2J mice average velocities (34.49 ±â€¯2.15 m/s) were significantly slower than WT (62.57 ±â€¯2.23 m/s; p < 0.0005), confirming the clinical observation of hindlimb paresis in dy2J/dy2J mice attributed to peripheral neuropathy. GA treated dy2J/dy2J mice showed significantly improved average sciatic-tibial motor nerve conduction velocity versus control dy2J/dy2J (50.35 ±â€¯2.9 m/s; p < 0.0005). CONCLUSION: In this study we show for the first time improvement in motor nerve conduction velocity of LAMA2-CMD dy2J/dy2J mouse model's hereditary peripheral neuropathy following GA treatment. SIGNIFICANCE: This study suggests a possible therapeutic effect of glatiramer acetate on hereditary peripheral neuropathy in this laminin-α2 disorder.


Asunto(s)
Adyuvantes Inmunológicos/uso terapéutico , Modelos Animales de Enfermedad , Acetato de Glatiramer/uso terapéutico , Laminina/genética , Distrofias Musculares/tratamiento farmacológico , Distrofias Musculares/genética , Conducción Nerviosa/efectos de los fármacos , Adyuvantes Inmunológicos/farmacología , Animales , Acetato de Glatiramer/farmacología , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , Conducción Nerviosa/fisiología , Nervio Ciático/efectos de los fármacos , Nervio Ciático/fisiología , Nervio Tibial/efectos de los fármacos , Nervio Tibial/fisiología
19.
Hum Mol Genet ; 28(20): 3369-3390, 2019 10 15.
Artículo en Inglés | MEDLINE | ID: mdl-31348492

RESUMEN

Congenital muscular dystrophy type-1A (Lama2-CMD) and Duchenne muscular dystrophy (DMD) result from deficiencies of laminin-α2 and dystrophin proteins, respectively. Although both proteins strengthen the sarcolemma, they are implicated in clinically distinct phenotypes. We used RNA-deep sequencing (RNA-Seq) of dy2J/dy2J, Lama2-CMD mouse model, skeletal muscle at 8 weeks of age to elucidate disease pathophysiology. This study is the first report of dy2J/dy2J model whole transcriptome profile. RNA-Seq of the mdx mouse model of DMD and wild-type (WT) mouse was carried as well in order to enable a novel comparison of dy2J/dy2J to mdx. A large group of shared differentially expressed genes (DEGs) was found in dy2J/dy2J and mdx models (1834 common DEGs, false discovery rate [FDR] < 0.05). Enrichment pathway analysis using ingenuity pathway analysis showed enrichment of inflammation, fibrosis, cellular movement, migration and proliferation of cells, apoptosis and necrosis in both mouse models (P-values 3E-10-9E-37). Via canonical pathway analysis, actin cytoskeleton, integrin, integrin-linked kinase, NF-kB, renin-angiotensin, epithelial-mesenchymal transition, and calcium signaling were also enriched and upregulated in both models (FDR < 0.05). Interestingly, significant downregulation of Pax7 was detected in dy2J/dy2J compared to upregulation of this key regeneration gene in mdx mice. Pax3 and Mamstr genes were also downregulated in dy2J/dy2J compared to WT mice. These results may explain the distinct disease course and severity in these models. While the mdx model at that stage shows massive regeneration, the dy2J/dy2J shows progressive dystrophic process. Our data deepen our understanding of the molecular pathophysiology and suggest new targets for additional therapies to upregulate regeneration in Lama2-CMD.


Asunto(s)
Músculo Esquelético/metabolismo , Distrofia Muscular de Duchenne/metabolismo , Factor de Transcripción PAX3/metabolismo , Factor de Transcripción PAX7/metabolismo , Animales , Movimiento Celular/genética , Movimiento Celular/fisiología , Proliferación Celular/genética , Proliferación Celular/fisiología , Modelos Animales de Enfermedad , Masculino , Ratones , Ratones Endogámicos mdx , Distrofia Muscular de Duchenne/genética , Necrosis/genética , Necrosis/metabolismo , Factor de Transcripción PAX3/genética , Factor de Transcripción PAX7/genética , Reacción en Cadena en Tiempo Real de la Polimerasa , Síndrome de Walker-Warburg/genética , Síndrome de Walker-Warburg/metabolismo
20.
Theor Biol Forum ; 112(1-2): 35-51, 2019 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-32125350

RESUMEN

To date, classical deterministic Newtonian physics has been used by biologists to describe living processes. However, it is increasingly appreciated that the probabilistic view offered by quantum mechanics more accurately describes the behavior of atoms and materials in all systems. Here, we discuss how the concepts of quantum mechanics can be applied to biological processes involved in cancer. We present a concise summary inspired by Heisenberg's Uncertainty Principle to describe our «Genetic Environmental Field Hypothesis¼. Combining the uncertainties of genetic changes as expressed by epigenetic changes and/or somatic mutations with the uncertainties of environmental changes, cells may become cancerous as a way to increase entropy. Throughout the paper we will utilize the H19 gene system as an example. Using the concepts of quantum mechanics to describe oncological processes may provide novel directions in our understanding of cancer.


Asunto(s)
Neoplasias , Teoría Cuántica , Entropía , Incertidumbre
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...