Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Nat Commun ; 14(1): 647, 2023 Feb 06.
Artículo en Inglés | MEDLINE | ID: mdl-36746965

RESUMEN

Ammonia is regarded as an energy vector for hydrogen storage, transport and utilization, which links to usage of renewable energies. However, efficient catalysts for ammonia decomposition and their underlying mechanism yet remain obscure. Here we report that atomically-dispersed Ru atoms on MgO support on its polar (111) facets {denoted as MgO(111)} show the highest rate of ammonia decomposition, as far as we are aware, than all catalysts reported in literature due to the strong metal-support interaction and efficient surface coupling reaction. We have carefully investigated the loading effect of Ru from atomic form to cluster/nanoparticle on MgO(111). Progressive increase of surface Ru concentration, correlated with increase in specific activity per metal site, clearly indicates synergistic metal sites in close proximity, akin to those bimetallic N2 complexes in solution are required for the stepwise dehydrogenation of ammonia to N2/H2, as also supported by DFT modelling. Whereas, beyond surface doping, the specific activity drops substantially upon the formation of Ru cluster/nanoparticle, which challenges the classical view of allegorically higher activity of coordinated Ru atoms in cluster form (B5 sites) than isolated sites.

2.
Angew Chem Int Ed Engl ; 58(48): 17433-17441, 2019 Nov 25.
Artículo en Inglés | MEDLINE | ID: mdl-31535776

RESUMEN

Molten LiCl and related eutectic electrolytes are known to permit direct electrochemical reduction of N2 to N3- with high efficiency. It had been proposed that this could be coupled with H2 oxidation in an electrolytic cell to produce NH3 at ambient pressure. Here, this proposal is tested in a LiCl-KCl-Li3 N cell and is found not to be the case, as the previous assumption of the direct electrochemical oxidation of N3- to NH3 is grossly over-simplified. We find that Li3 N added to the molten electrolyte promotes the spontaneous and simultaneous chemical disproportionation of H2 (H oxidation state 0) into H- (H oxidation state -1) and H+ in the form of NH2- /NH2 - /NH3 (H oxidation state +1) in the absence of applied current, resulting in non-Faradaic release of NH3 . It is further observed that NH2- and NH2 - possess their own redox chemistry. However, these spontaneous reactions allow us to propose an alternative, truly catalytic cycle. By adding LiH, rather than Li3 N, N2 can be reduced to N3- while stoichiometric amounts of H- are oxidised to H2 . The H2 can then react spontaneously with N3- to form NH3 , regenerating H- and closing the catalytic cycle. Initial tests show a peak NH3 synthesis rate of 2.4×10-8  mol cm-2 s-1 at a maximum current efficiency of 4.2 %. Isotopic labelling with 15 N2 confirms the resulting NH3 is from catalytic N2 reduction.

3.
Angew Chem Int Ed Engl ; 58(48): 17335-17341, 2019 Nov 25.
Artículo en Inglés | MEDLINE | ID: mdl-31560158

RESUMEN

There is an exciting possibility to decentralize ammonia synthesis for fertilizer production or energy storage without carbon emission from H2 obtained from renewables at small units operated at lower pressure. However, no suitable catalyst has yet been developed. Ru catalysts are known to be promoted by heavier alkali dopants. Instead of using heavy alkali metals, Li is herein shown to give the highest rate through surface polarisation despite its poorest electron donating ability. This exceptional promotion rate makes Ru-Li catalysts suitable for ammonia synthesis, which outclasses industrial Fe counterparts by at least 195 fold. Akin to enzyme catalysis, it is for the first time shown that Ru-Li catalysts hydrogenate end-on adsorbed N2 stabilized by Li+ on Ru terrace sites to ammonia in a stepwise manner, in contrast to typical N2 dissociation on stepped sites adopted by Ru-Cs counterparts, giving new insights in activating N2 by metallic catalysts.

4.
Dalton Trans ; 48(5): 1562-1568, 2019 Feb 07.
Artículo en Inglés | MEDLINE | ID: mdl-30566127

RESUMEN

Direct electrochemical synthesis of ammonia is proposed as a means of reducing the carbon footprint of the fertiliser industry, as well as providing new opportunities for carbon-free liquid energy storage. We review the current status of research into materials for electrochemical ammonia synthesis and evaluate the reported rates and efficiencies in terms of recent US Department of Energy targets. Surprisingly, development of electrocatalysts has only recently received much attention, and despite a number of promising rates, the target values remain distant. A number of theoretical studies suggest a range of candidate materials yet to be explored.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...