Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros













Base de datos
Intervalo de año de publicación
1.
Nano Lett ; 23(5): 1717-1725, 2023 Mar 08.
Artículo en Inglés | MEDLINE | ID: mdl-36821385

RESUMEN

Magnetic particle imaging (MPI) is a sensitive, high-contrast tracer modality that images superparamagnetic iron oxide nanoparticles, enabling radiation-free theranostic imaging. MPI resolution is currently limited by scanner and particle constraints. Recent tracers have experimentally shown 10× resolution and signal improvements with dramatically sharper M-H curves. Experiments show a dependence on interparticle interactions, conforming to literature definitions of superferromagnetism. We thus call our tracers superferromagnetic iron oxide nanoparticles (SFMIOs). While SFMIOs provide excellent signal and resolution, they exhibit hysteresis with non-negligible remanence and coercivity. We provide the first quantitative measurements of SFMIO remanence decay and reformation using a novel multiecho pulse sequence. We characterize MPI scanning with remanence decay and coercivity and describe an SNR-optimized pulse sequence for SFMIOs under human electromagnetic safety limitations. The resolution from SFMIOs could enable clinical MPI with 10× reduced scanner selection fields, reducing hardware costs by up to 100×.

2.
Small Methods ; 5(11): e2100796, 2021 11.
Artículo en Inglés | MEDLINE | ID: mdl-34927972

RESUMEN

Magnetic nanoparticles have many advantages in medicine such as their use in non-invasive imaging as a Magnetic Particle Imaging (MPI) tracer or Magnetic Resonance Imaging contrast agent, the ability to be externally shifted or actuated and externally excited to generate heat or release drugs for therapy. Existing nanoparticles have a gentle sigmoidal magnetization response that limits resolution and sensitivity. Here it is shown that superferromagnetic iron oxide nanoparticle chains (SFMIOs) achieve an ideal step-like magnetization response to improve both image resolution & SNR by more than tenfold over conventional MPI. The underlying mechanism relies on dynamic magnetization with square-like hysteresis loops in response to 20 kHz, 15 kAm-1 MPI excitation, with nanoparticles assembling into a chain under an applied magnetic field. Experimental data shows a "1D avalanche" dipole reversal of every nanoparticle in the chain when the applied field overcomes the dynamic coercive threshold of dipole-dipole fields from adjacent nanoparticles in the chain. Intense inductive signal is produced from this event resulting in a sharp signal peak. Novel MPI imaging strategies are demonstrated to harness this behavior towards order-of-magnitude medical image improvements. SFMIOs can provide a breakthrough in noninvasive imaging of cancer, pulmonary embolism, gastrointestinal bleeds, stroke, and inflammation imaging.


Asunto(s)
Nanopartículas de Magnetita/química , Células Madre Mesenquimatosas/citología , Células Cultivadas , Humanos , Imagen por Resonancia Magnética , Células Madre Mesenquimatosas/química
3.
Cancers (Basel) ; 13(21)2021 Oct 21.
Artículo en Inglés | MEDLINE | ID: mdl-34771448

RESUMEN

BACKGROUND: Magnetic Particle Imaging (MPI) is an emerging imaging modality for quantitative direct imaging of superparamagnetic iron oxide nanoparticles (SPION or SPIO). With different physics from MRI, MPI benefits from ideal image contrast with zero background tissue signal. This enables clear visualization of cancer with image characteristics similar to PET or SPECT, but using radiation-free magnetic nanoparticles instead, with infinite-duration reporter persistence in vivo. MPI for cancer imaging: demonstrated months of quantitative imaging of the cancer-related immune response with in situ SPION-labelling of immune cells (e.g., neutrophils, CAR T-cells). Because MPI suffers absolutely no susceptibility artifacts in the lung, immuno-MPI could soon provide completely noninvasive early-stage diagnosis and treatment monitoring of lung cancers. MPI for magnetic steering: MPI gradients are ~150 × stronger than MRI, enabling remote magnetic steering of magneto-aerosol, nanoparticles, and catheter tips, enhancing therapeutic delivery by magnetic means. MPI for precision therapy: gradients enable focusing of magnetic hyperthermia and magnetic-actuated drug release with up to 2 mm precision. The extent of drug release from the magnetic nanocarrier can be quantitatively monitored by MPI of SPION's MPS spectral changes within the nanocarrier. CONCLUSION: MPI is a promising new magnetic modality spanning cancer imaging to guided-therapy.

4.
Theranostics ; 10(7): 2965-2981, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32194849

RESUMEN

Magnetic fluid hyperthermia (MFH) treatment makes use of a suspension of superparamagnetic iron oxide nanoparticles, administered systemically or locally, in combination with an externally applied alternating magnetic field, to ablate target tissue by generating heat through a process called induction. The heat generated above the mammalian euthermic temperature of 37°C induces apoptotic cell death and/or enhances the susceptibility of the target tissue to other therapies such as radiation and chemotherapy. While most hyperthermia techniques currently in development are targeted towards cancer treatment, hyperthermia is also used to treat restenosis, to remove plaques, to ablate nerves and to alleviate pain by increasing regional blood flow. While RF hyperthermia can be directed invasively towards the site of treatment, non-invasive localization of heat through induction is challenging. In this review, we discuss recent progress in the field of RF magnetic fluid hyperthermia and introduce a new diagnostic imaging modality called magnetic particle imaging that allows for a focused theranostic approach encompassing treatment planning, treatment monitoring and spatially localized inductive heating.


Asunto(s)
Diagnóstico por Imagen/métodos , Compuestos Férricos/análisis , Hipertermia Inducida/métodos , Nanopartículas Magnéticas de Óxido de Hierro/análisis , Terapia por Radiofrecuencia/métodos , Nanomedicina Teranóstica/métodos , Animales , Neoplasias Encefálicas/diagnóstico por imagen , Neoplasias Encefálicas/terapia , Materiales Biocompatibles Revestidos , Diagnóstico por Imagen/instrumentación , Diseño de Equipo , Compuestos Férricos/administración & dosificación , Predicción , Humanos , Hipertermia Inducida/instrumentación , Nanopartículas Magnéticas de Óxido de Hierro/administración & dosificación , Magnetismo/instrumentación , Masculino , Ratones , Proyectos Piloto , Neoplasias de la Próstata/diagnóstico por imagen , Neoplasias de la Próstata/terapia
5.
Nanomedicine ; 14(4): 1191-1200, 2018 06.
Artículo en Inglés | MEDLINE | ID: mdl-29526511

RESUMEN

Restenosis by neointimal hyperplasia is still an ongoing concern in endovascular surgery. Slowing vascular smooth muscle cell (VSMC) proliferation by reversing the phenotype change, would allow vessel healing and re-endotheliazation. To accomplish this, we have developed heparin-coated magnetic nanoparticles for targeted drug therapy of neointimal hyperplasia. Iron oxide nanoparticles were modified with a poly (ethylene oxide) based coating and then further functionalized with heparin. In vitro experiments were conducted to observe changes in phenotype, metabolic activity, and viability of three relevant cell lines including VSMC, endothelial cells and fibroblasts. Inhibition of proliferation of VSMCs was observed with doses as low as 1 µg/mL Fe of heparin loaded nanoparticle where endothelial cells showed an increase in proliferation in response to treatment. Fibroblasts showed relatively low response. Results suggest proliferation suppression of VSMCs due to phenotype coupled with the increase in endothelial cell proliferation at low doses of heparin coated nanoparticles.


Asunto(s)
Heparina/química , Heparina/uso terapéutico , Hiperplasia/tratamiento farmacológico , Nanopartículas de Magnetita/química , Nanopartículas de Magnetita/uso terapéutico , Neointima/tratamiento farmacológico , Animales , Línea Celular , Proliferación Celular/efectos de los fármacos , Células Endoteliales/efectos de los fármacos , Femenino , Ratones , Ratones Desnudos , Ratas , Porcinos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA