Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Med Phys ; 47(11): 5931-5940, 2020 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-32521049

RESUMEN

PURPOSE: One of the most frequently cited radiomics investigations showed that features automatically extracted from routine clinical images could be used in prognostic modeling. These images have been made publicly accessible via The Cancer Imaging Archive (TCIA). There have been numerous requests for additional explanatory metadata on the following datasets - RIDER, Interobserver, Lung1, and Head-Neck1. To support repeatability, reproducibility, generalizability, and transparency in radiomics research, we publish the subjects' clinical data, extracted radiomics features, and digital imaging and communications in medicine (DICOM) headers of these four datasets with descriptive metadata, in order to be more compliant with findable, accessible, interoperable, and reusable (FAIR) data management principles. ACQUISITION AND VALIDATION METHODS: Overall survival time intervals were updated using a national citizens registry after internal ethics board approval. Spatial offsets of the primary gross tumor volume (GTV) regions of interest (ROIs) associated with the Lung1 CT series were improved on the TCIA. GTV radiomics features were extracted using the open-source Ontology-Guided Radiomics Analysis Workflow (O-RAW). We reshaped the output of O-RAW to map features and extraction settings to the latest version of Radiomics Ontology, so as to be consistent with the Image Biomarker Standardization Initiative (IBSI). Digital imaging and communications in medicine metadata was extracted using a research version of Semantic DICOM (SOHARD, GmbH, Fuerth; Germany). Subjects' clinical data were described with metadata using the Radiation Oncology Ontology. All of the above were published in Resource Descriptor Format (RDF), that is, triples. Example SPARQL queries are shared with the reader to use on the online triples archive, which are intended to illustrate how to exploit this data submission. DATA FORMAT: The accumulated RDF data are publicly accessible through a SPARQL endpoint where the triples are archived. The endpoint is remotely queried through a graph database web application at http://sparql.cancerdata.org. SPARQL queries are intrinsically federated, such that we can efficiently cross-reference clinical, DICOM, and radiomics data within a single query, while being agnostic to the original data format and coding system. The federated queries work in the same way even if the RDF data were partitioned across multiple servers and dispersed physical locations. POTENTIAL APPLICATIONS: The public availability of these data resources is intended to support radiomics features replication, repeatability, and reproducibility studies by the academic community. The example SPARQL queries may be freely used and modified by readers depending on their research question. Data interoperability and reusability are supported by referencing existing public ontologies. The RDF data are readily findable and accessible through the aforementioned link. Scripts used to create the RDF are made available at a code repository linked to this submission: https://gitlab.com/UM-CDS/FAIR-compliant_clinical_radiomics_and_DICOM_metadata.


Asunto(s)
Metadatos , Bases de Datos Factuales , Alemania , Humanos , Reproducibilidad de los Resultados , Flujo de Trabajo
2.
Stud Health Technol Inform ; 205: 166-70, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-25160167

RESUMEN

The DICOM standard is ubiquitous within medicine. However, improved DICOM semantics would significantly enhance search operations. Furthermore, databases of current PACS systems are not flexible enough for the demands within image analysis research. In this paper, we investigated if we can use Semantic Web technology, to store and represent metadata of DICOM image files, as well as linking additional computational results to image metadata. Therefore, we developed a proof of concept containing two applications: one to store commonly used DICOM metadata in an RDF repository, and one to calculate imaging biomarkers based on DICOM images, and store the biomarker values in an RDF repository. This enabled us to search for all patients with a gross tumor volume calculated to be larger than 50 cc. We have shown that we can successfully store the DICOM metadata in an RDF repository and are refining our proof of concept with regards to volume naming, value representation, and the applications themselves.


Asunto(s)
Interpretación de Imagen Asistida por Computador/normas , Almacenamiento y Recuperación de la Información/normas , Internet , Neoplasias/patología , Sistemas de Información Radiológica/normas , Semántica , Terminología como Asunto , Humanos , Procesamiento de Lenguaje Natural , Guías de Práctica Clínica como Asunto , Carga Tumoral
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...