Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros













Base de datos
Intervalo de año de publicación
1.
ACS Chem Biol ; 16(8): 1493-1507, 2021 08 20.
Artículo en Inglés | MEDLINE | ID: mdl-34355883

RESUMEN

Aliphatic diazirine analogues of cholesterol have been used previously to elaborate the cholesterol proteome and identify cholesterol binding sites on proteins. Cholesterol analogues containing the trifluoromethylphenyl diazirine (TPD) group have not been reported. Both classes of diazirines have been prepared for neurosteroid photolabeling studies and their combined use provided information that was not obtainable with either diazirine class alone. Hence, we prepared cholesterol TPD analogues and used them along with previously reported aliphatic diazirine analogues as photoaffinity labeling reagents to obtain additional information on the cholesterol binding sites of the pentameric Gloeobacter ligand-gated ion channel (GLIC). We first validated the TPD analogues as cholesterol substitutes and compared their actions with those of previously reported aliphatic diazirines in cell culture assays. All the probes bound to the same cholesterol binding site on GLIC but with differences in photolabeling efficiencies and residues identified. Photolabeling of mammalian (HEK) cell membranes demonstrated differences in the pattern of proteins labeled by the two classes of probes. Collectively, these date indicate that cholesterol photoaffinity labeling reagents containing an aliphatic diazirine or TPD group provide complementary information and will both be useful tools in future studies of cholesterol biology.


Asunto(s)
Colesterol/análogos & derivados , Diazometano/análogos & derivados , Canales Iónicos Activados por Ligandos/química , Etiquetas de Fotoafinidad/química , Alquinos/síntesis química , Alquinos/química , Alquinos/metabolismo , Sitios de Unión , Colesterol/síntesis química , Colesterol/metabolismo , Cianobacterias/química , Diazometano/síntesis química , Diazometano/metabolismo , Colorantes Fluorescentes/química , Canales Iónicos Activados por Ligandos/metabolismo , Simulación del Acoplamiento Molecular , Simulación de Dinámica Molecular , Etiquetas de Fotoafinidad/síntesis química , Etiquetas de Fotoafinidad/metabolismo , Unión Proteica
2.
J Lipid Res ; 61(3): 403-412, 2020 03.
Artículo en Inglés | MEDLINE | ID: mdl-31988149

RESUMEN

Niemann-Pick disease type C (NPC) disease is a lipid-storage disorder that is caused by mutations in the genes encoding NPC proteins and results in lysosomal cholesterol accumulation. 2-Hydroxypropyl-ß-cyclodextrin (CD) has been shown to reduce lysosomal cholesterol levels and enhance sterol homeostatic responses, but CD's mechanism of action remains unknown. Recent work provides evidence that CD stimulates lysosomal exocytosis, raising the possibility that lysosomal cholesterol is released in exosomes. However, therapeutic concentrations of CD do not alter total cellular cholesterol, and cholesterol homeostatic responses at the ER are most consistent with increased ER membrane cholesterol. To address these disparate findings, here we used stable isotope labeling to track the movement of lipoprotein cholesterol cargo in response to CD in NPC1-deficient U2OS cells. Although released cholesterol was detectable, it was not associated with extracellular vesicles. Rather, we demonstrate that lysosomal cholesterol trafficks to the plasma membrane (PM), where it exchanges with lipoprotein-bound cholesterol in a CD-dependent manner. We found that in the absence of suitable extracellular cholesterol acceptors, cholesterol exchange is abrogated, cholesterol accumulates in the PM, and reesterification at the ER is increased. These results support a model in which CD promotes intracellular redistribution of lysosomal cholesterol, but not cholesterol exocytosis or efflux, during the restoration of cholesterol homeostatic responses.


Asunto(s)
Colesterol/metabolismo , Ciclodextrinas/farmacología , Péptidos y Proteínas de Señalización Intracelular/metabolismo , Lisosomas/efectos de los fármacos , Línea Celular Tumoral , Membrana Celular/efectos de los fármacos , Membrana Celular/metabolismo , Colesterol/análisis , Homeostasis/efectos de los fármacos , Humanos , Péptidos y Proteínas de Señalización Intracelular/deficiencia , Marcaje Isotópico , Lisosomas/química , Lisosomas/metabolismo , Proteína Niemann-Pick C1
3.
J Lipid Res ; 60(3): 707-716, 2019 03.
Artículo en Inglés | MEDLINE | ID: mdl-30617147

RESUMEN

Cholesterol is an essential structural component of cellular membranes and precursor molecule for oxysterol, bile acid, and hormone synthesis. The study of intracellular cholesterol trafficking pathways has been limited in part due to a lack of suitable cholesterol analogues. Herein, we developed three novel diazirine alkyne cholesterol probes: LKM38, KK174, and KK175. We evaluated these probes as well as a previously described diazirine alkyne cholesterol analogue, trans-sterol, for their fidelity as cholesterol mimics and for study of cholesterol trafficking. LKM38 emerged as a promising cholesterol mimic because it both sustained the growth of cholesterol-auxotrophic cells and appropriately regulated key cholesterol homeostatic pathways. When presented as an ester in lipoprotein particles, LKM38 initially localized to the lysosome and subsequently trafficked to the plasma membrane and endoplasmic reticulum. LKM38 bound to diverse, established cholesterol binding proteins. Through a detailed characterization of the cellular behavior of a panel of diazirine alkyne probes using cell biological, biochemical trafficking assays and immunofluorescence approaches, we conclude that LKM38 can serve as a powerful tool for the study of cholesterol protein interactions and trafficking.


Asunto(s)
Alquinos/química , Colesterol/metabolismo , Diazometano/síntesis química , Diazometano/metabolismo , Espacio Intracelular/metabolismo , Sondas Moleculares/síntesis química , Sondas Moleculares/metabolismo , Transporte Biológico , Línea Celular Tumoral , Técnicas de Química Sintética , Diazometano/química , Homeostasis , Humanos , Lipoproteínas/metabolismo , Lisosomas/metabolismo , Sondas Moleculares/química
4.
Hum Mol Genet ; 27(12): 2101-2112, 2018 06 15.
Artículo en Inglés | MEDLINE | ID: mdl-29659804

RESUMEN

Niemann-Pick type C (NPC) disease is a rare lysosomal storage disease caused primarily by mutations in NPC1. NPC1 encodes the lysosomal cholesterol transport protein NPC1. The most common NPC1 mutation is a missense mutation (NPC1I1061T) that causes misfolding and rapid degradation of mutant protein in the endoplasmic reticulum. Cholesterol accumulates in enlarged lysosomes as a result of decreased levels of lysosomal NPC1I1061T protein in patient cells. There is currently no cure or FDA-approved treatment for patients. We sought to identify novel compounds that decrease lysosomal cholesterol storage in NPC1I1061T/I1061T patient fibroblasts using a high-content screen with the cholesterol dye, filipin and the lysosomal marker, LAMP1. A total of 3532 compounds were screened, including 2013 FDA-approved drugs, 327 kinase inhibitors and 760 serum metabolites. Twenty-three hits were identified that decreased both filipin and LAMP1 signals. The majority of hits (16/21) were histone deacetylase (HDAC) inhibitors, a previously described class of modifiers of NPC cholesterol storage. Of the remaining hits, the antimicrobial compound, alexidine dihydrochloride had the most potent lysosomal cholesterol-reducing activity. Subsequent analyses showed that alexidine specifically increased levels of NPC1 transcript and mature protein in both control and NPC patient cells. Although unsuitable for systemic therapy, alexidine represents a unique tool compound for further NPC studies and as a potent inducer of NPC1. Together, these findings confirm the utility of high-content image-based compound screens of NPC1 patient cells and support extending the approach into larger compound collections.


Asunto(s)
Proteínas Portadoras/genética , Colesterol/genética , Inhibidores de Histona Desacetilasas/administración & dosificación , Glicoproteínas de Membrana/genética , Enfermedad de Niemann-Pick Tipo C/tratamiento farmacológico , Biguanidas/administración & dosificación , Colesterol/metabolismo , Evaluación Preclínica de Medicamentos , Retículo Endoplásmico/efectos de los fármacos , Retículo Endoplásmico/genética , Fibroblastos/efectos de los fármacos , Filipina/metabolismo , Inhibidores de Histona Desacetilasas/aislamiento & purificación , Humanos , Péptidos y Proteínas de Señalización Intracelular , Proteína 1 de la Membrana Asociada a los Lisosomas/genética , Lisosomas/efectos de los fármacos , Lisosomas/metabolismo , Metaboloma/efectos de los fármacos , Mutación Missense , Proteína Niemann-Pick C1 , Enfermedad de Niemann-Pick Tipo C/genética , Enfermedad de Niemann-Pick Tipo C/patología
5.
Science ; 355(6331): 1306-1311, 2017 03 24.
Artículo en Inglés | MEDLINE | ID: mdl-28336668

RESUMEN

The mechanistic target of rapamycin complex 1 (mTORC1) protein kinase is a master growth regulator that becomes activated at the lysosome in response to nutrient cues. Here, we identify cholesterol, an essential building block for cellular growth, as a nutrient input that drives mTORC1 recruitment and activation at the lysosomal surface. The lysosomal transmembrane protein, SLC38A9, is required for mTORC1 activation by cholesterol through conserved cholesterol-responsive motifs. Moreover, SLC38A9 enables mTORC1 activation by cholesterol independently from its arginine-sensing function. Conversely, the Niemann-Pick C1 (NPC1) protein, which regulates cholesterol export from the lysosome, binds to SLC38A9 and inhibits mTORC1 signaling through its sterol transport function. Thus, lysosomal cholesterol drives mTORC1 activation and growth signaling through the SLC38A9-NPC1 complex.


Asunto(s)
Sistemas de Transporte de Aminoácidos/metabolismo , Proteínas Portadoras/metabolismo , Colesterol/metabolismo , Lisosomas/metabolismo , Complejos Multiproteicos/metabolismo , Proteínas Nucleares/metabolismo , Serina-Treonina Quinasas TOR/metabolismo , Secuencias de Aminoácidos , Sistemas de Transporte de Aminoácidos/genética , Animales , Transporte Biológico , Células CHO , HDL-Colesterol/metabolismo , Cricetulus , Activación Enzimática , Fibroblastos , Células HEK293 , Humanos , Diana Mecanicista del Complejo 1 de la Rapamicina , Ratones , Complejos Multiproteicos/antagonistas & inhibidores , Mutación , Transducción de Señal , Serina-Treonina Quinasas TOR/antagonistas & inhibidores
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA