Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Int J Mol Sci ; 25(16)2024 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-39201582

RESUMEN

WRKY transcription factors (TFs) can participate in plant biological stress responses and play important roles. SlWRKY80 was found to be differentially expressed in the Mi-1- and Mi-3-resistant tomato lines by RNA-seq and may serve as a key node for disease resistance regulation. This study used RNAi to determine whether SlWRKY80 silencing could influence the sensitivity of 'M82' (mi-1/mi-1)-susceptible lines to M. incognita. Further overexpression of this gene revealed a significant increase in tomato disease resistance, ranging from highly susceptible to susceptible, combined with the identification of growth (plant height, stem diameter, and leaf area) and physiological (soluble sugars and proteins; root activity) indicators, clarifying the role of SlWRKY80 as a positive regulatory factor in tomato defense against M. incognita. Based on this phenomenon, a preliminary exploration of its metabolic signals revealed that SlWRKY80 stimulates different degrees of signaling, such as salicylic acid (SA), jasmonic acid (JA), and ethylene (ETH), and may synergistically regulate reactive oxygen species (ROS) accumulation and scavenging enzyme activity, hindering the formation of feeding sites and ultimately leading to the reduction of root gall growth. To our knowledge, SlWRKY80 has an extremely high utilization value for improving tomato resistance to root-knot nematodes and breeding.


Asunto(s)
Resistencia a la Enfermedad , Regulación de la Expresión Génica de las Plantas , Enfermedades de las Plantas , Proteínas de Plantas , Solanum lycopersicum , Factores de Transcripción , Tylenchoidea , Solanum lycopersicum/parasitología , Solanum lycopersicum/genética , Solanum lycopersicum/metabolismo , Solanum lycopersicum/crecimiento & desarrollo , Tylenchoidea/fisiología , Tylenchoidea/patogenicidad , Animales , Enfermedades de las Plantas/parasitología , Enfermedades de las Plantas/genética , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Resistencia a la Enfermedad/genética , Factores de Transcripción/metabolismo , Factores de Transcripción/genética , Ciclopentanos/metabolismo , Oxilipinas/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Ácido Salicílico/metabolismo , Raíces de Plantas/parasitología , Raíces de Plantas/genética , Raíces de Plantas/metabolismo
2.
Chin Med J (Engl) ; 2023 Aug 30.
Artículo en Inglés | MEDLINE | ID: mdl-37672508

RESUMEN

BACKGROUND: Growth retardation is a common complication of chronic kidney disease in children, which can be partially relieved after renal transplantation. This study aimed to develop and validate a predictive model for growth patterns of children with end-stage renal disease (ESRD) after kidney transplantation using machine learning algorithms based on genomic and clinical variables. METHODS: A retrospective cohort of 110 children who received kidney transplants between May 2013 and September 2021 at the First Affiliated Hospital of Zhengzhou University were recruited for whole-exome sequencing (WES), and another 39 children who underwent transplant from September 2021 to March 2022 were enrolled for external validation. Based on previous studies, we comprehensively collected 729 height-related single-nucleotide polymorphisms (SNPs) in exon regions. Seven machine learning algorithms and 10-fold cross-validation analysis were employed for model construction. RESULTS: The 110 children were divided into two groups according to change in height-for-age Z-score. After univariate analysis, age and 19 SNPs were incorporated into the model and validated. The random forest model showed the best prediction efficacy with an accuracy of 0.8125 and an area under curve (AUC) of 0.924, and also performed well in the external validation cohort (accuracy, 0.7949; AUC, 0.796). CONCLUSIONS: A model with good performance for predicting post-transplant growth patterns in children based on SNPs and clinical variables was constructed and validated using machine learning algorithms. The model is expected to guide clinicians in the management of children after renal transplantation, including the use of growth hormone, glucocorticoid withdrawal, and nutritional supplementation, to alleviate growth retardation in children with ESRD.

3.
Plants (Basel) ; 12(13)2023 Jun 22.
Artículo en Inglés | MEDLINE | ID: mdl-37446977

RESUMEN

Root-knot nematode (RKN) infections are among the most serious soil-borne diseases in the world, and tomato is a common host of RKNs. WRKY transcription factors are involved in complex, diverse biological processes in plants. In a previous study, a resistant variety, LA3858 (Mi-3/Mi-3), was treated at different soil temperatures before RNA-seq, and six differentially expressed genes (DEGs) encoding WRKY proteins were screened. In this study, cloning and sequencing were used to identify six target DEGs encoding SlWRKY1, SlWRKY13, SlWRKY30, SlWRKY41, SlWRKY46, and SlWRKY80. Conserved domain identification and phylogenetic tree analysis showed that SlWRKY1, SlWRKY13, and SlWRKY46 have similar functions and are mainly involved in plant growth and development and abiotic stress responses. SlWRKY30 and SlWRKY41 share high homology, while AtWRKY46 and AtWRKY70, which are highly homologous to SlWRKY80, play an important role in the disease resistance of A. thaliana. Considering these findings combined with the high level of SlWRKY80 expression observed in the roots and leaves of the resistant variety Motelle (Mi-1/Mi-1) and the continuous upregulation of SlWRKY80 expression in the roots after inoculation of Motelle with M. incognita, it is speculated that SlWRKY80 plays an important role in the Mi-1-mediated disease resistance pathway. Further study revealed that SlWRKY80 is a typical nuclear-localized protein, and a virus-induced gene silencing (VIGS) assay verified that SlWRKY80 is involved in tomato resistance to RKNs as a positive regulator. SA and JA signals play an important role in Mi-1-mediated resistance to RKNs. SlWRKY80 was able to respond rapidly to treatment with both plant hormones, which indicated that SlWRKY80 might be involved in disease resistance regulation through various immune pathways.

4.
Appl Phys Rev ; 10(2): 021410, 2023 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-37265478

RESUMEN

In the context of continued spread of coronavirus disease 2019 (COVID-19) caused by SARS-CoV-2 and the emergence of new variants, the demand for rapid, accurate, and frequent detection is increasing. Moreover, the new predominant strain, Omicron variant, manifests more similar clinical features to those of other common respiratory infections. The concurrent detection of multiple potential pathogens helps distinguish SARS-CoV-2 infection from other diseases with overlapping symptoms, which is significant for providing tailored treatment to patients and containing the outbreak. Here, we report a lab-on-a-chip biosensing platform for SARS-CoV-2 detection based on the subwavelength grating micro-ring resonator. The sensing surface is functionalized by specific antibody against SARS-CoV-2 spike protein, which could produce redshifts of resonant peaks by antigen-antibody combination, thus achieving quantitative detection. Additionally, the sensor chip is integrated with a microfluidic chip featuring an anti-backflow Y-shaped structure that enables the concurrent detection of two analytes. In this study, we realized the detection and differentiation of COVID-19 and influenza A H1N1. Experimental results indicate that the limit of detection of our device reaches 100 fg/ml (1.31 fM) within 15 min detecting time, and cross-reactivity tests manifest the specificity of the optical diagnostic assay. Furthermore, the integrated packaging and streamlined workflow facilitate its use for clinical applications. Thus, the biosensing platform presents a promising approach for attaining highly sensitive, selective, multiplexed, and quantitative point-of-care diagnosis and distinction between COVID-19 and influenza.

5.
Toxicol Appl Pharmacol ; 465: 116440, 2023 04 15.
Artículo en Inglés | MEDLINE | ID: mdl-36870574

RESUMEN

Ischemia/reperfusion- (I/R-) induced injury is unavoidable and a major risk factor for graft failure and acute rejection following kidney transplantation. However, few effective interventions are available to improve the outcome due to the complicated mechanisms and lack of appropriate therapeutic targets. Hence, this research aimed to explore the effect of the thiazolidinedione (TZD) compounds on I/R-induced kidney damage. One of the main causes of renal I/R injury is the ferroptosis of renal tubular cells. In this study, compared with the antidiabetic TZD pioglitazone (PGZ), we found its derivative mitoglitazone (MGZ) exerted significantly inhibitory effects on erastin-induced ferroptosis by suppressing mitochondrial membrane potential hyperpolarization and lipid ROS production in HEK293 cells. Moreover, MGZ pretreatment remarkably alleviated I/R-induced renal damages by inhibiting cell death and inflammation, upregulating the expression of glutathione peroxidase 4 (GPX4), and reducing iron-related lipid peroxidation in C57BL/6 N mice. Additionally, MGZ exhibited excellent protection against I/R-induced mitochondrial dysfunction by restoring ATP production, mitochondrial DNA copy numbers, and mitochondrial morphology in kidney tissues. Mechanistically, molecular docking and surface plasmon resonance experiments demonstrated that MGZ exhibited a high binding affinity with the mitochondrial outer membrane protein mitoNEET. Collectively, our findings indicated the renal protective effect of MGZ was closely linked to regulating the mitoNEET-mediated ferroptosis pathway, thus offering potential therapeutic strategies for ameliorating I/R injuries.


Asunto(s)
Ferroptosis , Daño por Reperfusión , Ratones , Animales , Humanos , Células HEK293 , Simulación del Acoplamiento Molecular , Ratones Endogámicos C57BL , Riñón/metabolismo , Daño por Reperfusión/tratamiento farmacológico , Daño por Reperfusión/prevención & control , Daño por Reperfusión/metabolismo , Proteínas de la Membrana/metabolismo , Proteínas de Unión a Hierro/metabolismo , Proteínas de Unión a Hierro/farmacología
6.
Nat Commun ; 11(1): 2154, 2020 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-32358492

RESUMEN

The past two decades have witnessed the stagnation of the clock speed of microprocessors followed by the recent faltering of Moore's law as nanofabrication technology approaches its unavoidable physical limit. Vigorous efforts from various research areas have been made to develop power-efficient and ultrafast computing machines in this post-Moore's law era. With its unique capacity to integrate complex electro-optic circuits on a single chip, integrated photonics has revolutionized the interconnects and has shown its striking potential in optical computing. Here, we propose an electronic-photonic computing architecture for a wavelength division multiplexing-based electronic-photonic arithmetic logic unit, which disentangles the exponential relationship between power and clock rate, leading to an enhancement in computation speed and power efficiency as compared to the state-of-the-art transistors-based circuits. We experimentally demonstrate its practicality by implementing a 4-bit arithmetic logic unit consisting of 8 high-speed microdisk modulators and operating at 20 GHz. This approach paves the way to future power-saving and high-speed electronic-photonic computing circuits.

7.
Opt Express ; 26(21): 28002-28012, 2018 Oct 15.
Artículo en Inglés | MEDLINE | ID: mdl-30469856

RESUMEN

Integrated optical computing attracts increasing interest recently as Moore's law approaches the physical limitation. Among all the approaches of integrated optical computing, directed logic that takes the full advantage of integrated photonics and electronics has received lots of investigation since its first introduction in 2007. Meanwhile, as integrated photonics matures, it has become critical to develop automated methods for synthesizing optical devices for large-scale optical designs. In this paper, we propose a general electro-optic (EO) logic in a higher level to explore its potential in integrated computing. Compared to the directed logic, the EO logic leads to a briefer design with shorter optical paths and fewer components. Then a comprehensive gate library based on EO logic is summarized. At last, an And-Inverter Graphs (AIGs) based automated logic synthesis algorithm is described as an example to implement the EO logic, which offers an instruction for the design automation of high-speed integrated optical computing circuits.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...