RESUMEN
The penile epithelial microbiome remains underexplored. We sequenced human RNA and a segment of the bacterial 16S rRNA gene from the foreskin tissue of 144 adolescents from South Africa and Uganda collected during penile circumcision after receipt of 1-2 doses of placebo, emtricitabine + tenofovir disoproxil fumarate, or emtricitabine + tenofovir alafenamide to investigate the microbiome of foreskin tissue and its potential changes with antiretroviral use. We identified a large number of anaerobic species, including Corynebacterium acnes, which was detected more frequently in participants from South Africa than Uganda. Bacterial populations did not differ by treatment received, and no differentially abundant taxa were identified between placebo versus active drug recipients. The relative abundance of specific bacterial taxa was negatively correlated with expression of genes downstream of the innate immune response to bacteria and regulation of inflammation. Our results show no difference in the tissue microbiome of the foreskin with short-course antiretroviral use but that bacterial taxa were largely inversely correlated with inflammatory gene expression, consistent with commensal colonization.
RESUMEN
Bacille Calmette-Guerin (BCG) vaccine can elicit good TH1 responses in neonates. We hypothesized that the pioneer gut microbiota affects vaccine T cell responses. Infants who are HIV exposed but uninfected (iHEU) display an altered immunity to vaccination. BCG-specific immune responses were analyzed at 7 weeks of age in iHEU, and responses were categorized as high or low. Bifidobacterium longum subsp. infantis was enriched in the stools of high responders, while Bacteroides thetaiotaomicron was enriched in low responders at time of BCG vaccination. Neonatal germ-free or SPF mice orally gavaged with live B. infantis exhibited significantly higher BCG-specific T cells compared with pups gavaged with B. thetaiotaomicron. B. infantis and B. thetaiotaomicron differentially affected stool metabolome and colonic transcriptome. Human colonic epithelial cells stimulated with B. infantis induced a unique gene expression profile versus B. thetaiotaomicron. We thus identified a causal role of B. infantis in early-life antigen-specific immunity.
Asunto(s)
Bifidobacterium longum subspecies infantis , Microbioma Gastrointestinal , Humanos , Lactante , Ratones , Animales , Vacuna BCG , Linfocitos T , Heces/microbiologíaRESUMEN
The interaction between cervicovaginal virome, bacteriome and genital inflammation has not been extensively investigated. We assessed the vaginal DNA virome from 33 South African adolescents (15-19 years old) using shotgun DNA sequencing of purified virions. We present analyses of eukaryote-infecting DNA viruses, with a focus on human papillomavirus (HPV) genomes and relate these to the vaginal bacterial microbiota (assessed by 16S rRNA gene sequencing) and cytokines (assessed by Luminex). The DNA virome included single-stranded (Anelloviridae, Genomoviridae) and double-stranded DNA viruses (Adenoviridae, Alloherpesviridae, Herpesviridae, Marseilleviridae, Mimiviridae, Polyomaviridae, Poxviridae). We identified 110 unique, complete HPV genomes within two genera (Alphapapillomavirus and Gammapapillomavirus) representing 40 HPV types and 12 species. Of the 40 HPV types identified, 35 showed positive co-infection patterns with at least one other type, mainly HPV-16. HPV-35, a high-risk genotype currently not targeted by available vaccines, was the most prevalent HPV type identified in this cohort. Bacterial taxa commonly associated with bacterial vaginosis also correlated with the presence of HPV. Bacterial vaginosis, rather than HPV, was associated with increased genital inflammation. This study lays the foundation for future work characterizing the vaginal virome and its role in women's health.
Asunto(s)
Herpesviridae , Microbiota , Infecciones por Papillomavirus , Vaginosis Bacteriana , Femenino , Adolescente , Humanos , Adulto Joven , Adulto , Vaginosis Bacteriana/microbiología , Virus del Papiloma Humano , Citocinas , ARN Ribosómico 16S/genética , Sudáfrica , Vagina , Microbiota/genética , Papillomaviridae/genética , Bacterias/genética , Herpesviridae/genética , Inflamación/complicacionesRESUMEN
Effective contraceptives are a global health imperative for reproductive-aged women. However, there remains a lack of rigorous data regarding the effects of contraceptive options on vaginal bacteria and inflammation. Among 218 women enrolled into a substudy of the ECHO Trial (NCT02550067), we evaluate the effect of injectable intramuscular depot medroxyprogesterone acetate (DMPA-IM), levonorgestrel implant (LNG), and a copper intrauterine device (Cu-IUD) on the vaginal environment after one and six consecutive months of use, using 16S rRNA gene sequencing and multiplex cytokine assays. Primary endpoints include incident BV occurrence, bacterial diversity, and bacterial and cytokine concentrations. Secondary endpoints are bacterial and cytokine concentrations associated with later HIV seroconversion. Participants randomized to Cu-IUD exhibit elevated bacterial diversity, increased cytokine concentrations, and decreased relative abundance of lactobacilli after one and six months of use, relative to enrollment and other contraceptive options. Total bacterial loads of women using Cu-IUD increase 5.5 fold after six months, predominantly driven by increases in the concentrations of several inflammatory anaerobes. Furthermore, growth of L. crispatus (MV-1A-US) is inhibited by Cu2+ ions below biologically relevant concentrations, in vitro. Our work illustrates deleterious effects on the vaginal environment induced by Cu-IUD initiation, which may adversely impact sexual and reproductive health.
Asunto(s)
Dispositivos Intrauterinos de Cobre , Femenino , Humanos , Adulto , Acetato de Medroxiprogesterona/farmacología , Lactobacillus , ARN Ribosómico 16S/genética , Bacterias Anaerobias , AnticonceptivosRESUMEN
Other than for papillomaviruses, there is a paucity of whole-genome sequences for bacteriophages and eukaryote-infecting viruses isolated from the female genital tract. Here, we report the genome sequences of 16 microviruses, 3 anelloviruses, 2 polyomaviruses, 1 genomovirus, and 1 caudovirus that were identified in vaginal secretion samples from adolescents in South Africa.
RESUMEN
Whether antibiotic treatment during gestation impacts T cell immunity to vaccination in offspring is unexplored. Dams treated with polymyxin B (PMB) during gestation (Mg) displayed altered microbial communities prior to delivery compared to control dams (Mc). Differences in microbiota were also evident in pups born to polymyxin B-treated dams (Pg) compared to control pups (Pc). When pups were immunized with Bacille Calmette-Guerin (BCG), we observed no difference in TB10.4-specific T cells between Pc and Pg 4 weeks postimmunization. Significantly fewer splenic CD4 T cells from BCG-vaccinated Pg produced interleukin-2 (IL-2) upon stimulation, suggesting a possible functional deficiency. There was no difference in purified protein derivative (PPD)-specific IgG between Pc and Pg at this time point. However, when infected with Mycobacterium tuberculosis, Pg displayed significantly higher bacterial burden in the lung than Pc. Our results show that maternal PMB treatment during gestation may not impact splenic antigen-specific T cell responses following BCG vaccination but alters susceptibility to M. tuberculosis in offspring. IMPORTANCE The composition of the pioneer microbiota that colonize the infant gut are determined by the mother. Polymyxin B-induced changes in the maternal microbiota during pregnancy impact the offspring gut microbiota but not vaccine-specific CD4 T cell response. However, when infected with Mycobacterium tuberculosis, offspring born to mothers with an altered gut microbiota are susceptible to infection compared to those born to mothers not exposed to antibiotics.
Asunto(s)
Mycobacterium bovis , Mycobacterium tuberculosis , Femenino , Embarazo , Antibacterianos/farmacología , Antibacterianos/metabolismo , Vacuna BCG , Linfocitos T CD4-Positivos , Polimixina B/farmacología , Vacunación , AnimalesRESUMEN
In a phase-IIa trial, we investigated the influence of 90 days continuous-delivery tenofovir (TFV) intravaginal rings (IVRs) with/without levonorgestrel (LNG) on the genital microbiota of Kenyan women. Eligible women (n = 27; 18-34 years; negative for HIV, sexually transmitted infections, and Amsel-bacterial vaginosis) were randomized 2:2:1 to use of IVRs containing TFV, TFV/LNG, or placebo. Using vaginal wall and IVR swabs at IVR insertion and removal, the genital microbial composition was determined using 16S rRNA gene sequencing. The presence of Candida spp. was determined using qPCR. The vaginal total bacterial burden appeared to decrease with TFV and TFV/LNG IVR use (log100.57 and log100.27 decrease respectively; p > 0.05). The TFV/LNG IVR was more 'stabilizing': 50% of the participants' microbiota community state types remained unchanged and 50% shifted towards higher Lactobacillus abundance. Specifically, TFV/LNG IVR use was accompanied by increased abundances of Lactobacillus gasseri/hominis/johnsonii/taiwanensis (16.3-fold) and L. fermentum/reuteri/vaginalis (7.0-fold; all p < 0.01). A significant shift in the overall microbial α-diversity or ß-diversity was not observed for either IVR, and IVR use did not influence Candida spp. prevalence. TFV/LNG and TFV IVRs did not adversely affect the genital microbiota and are safe to use. Our findings support further studies assessing their efficacy in preventing HIV/HSV-2 and unintended pregnancies.
Asunto(s)
Infecciones por VIH , Microbiota , Administración Intravaginal , Femenino , Infecciones por VIH/tratamiento farmacológico , Infecciones por VIH/prevención & control , Humanos , Kenia/epidemiología , Levonorgestrel/efectos adversos , ARN Ribosómico 16S , Tenofovir/efectos adversos , VaginaRESUMEN
Background: Cervicovaginal inflammation, bacterial microbiota and hormonal contraceptives all influence sexual and reproductive health. To date, the effects of intramuscular depo-medroxyprogesterone acetate (DMPA-IM) versus injectable norethisterone enanthate (NET-EN) on vaginal microbiota or cytokines have not been compared back-to-back, although in-vitro data suggest that DMPA-IM and NET-EN have different pharmacokinetic and biologic activities. This study aimed at comparing the effects of DMPA-IM versus NET-EN initiation on cervicovaginal cytokines and microbiota in women at high risk for sexually transmitted infections (STIs) assigned to the respective contraceptives. Methods: We collected socio-demographic characteristics and vaginal samples from women initiating DMPA-IM (ECHO Trial; n = 53) and NET-EN (UChoose Trial; n = 44) at baseline and after two consecutive injections to assess cytokine concentrations by Luminex, vaginal microbiota by 16S rRNA gene sequencing, STIs, bacterial vaginosis (BV) and candidiasis. Results: Cytokine concentrations did not change significantly after initiating DMPA-IM or NET-EN, although NET-EN versus DMPA-IM-associated profiles were distinct. While the abundance of bacterial taxa associated with optimal and non-optimal microbiota fluctuated with DMPA-IM use, overall community composition did not significantly change with either contraceptive. HSV-2 serology, chlamydial infection, gonorrhoea and candidiasis did not influence the associations between contraceptive type and cervicovaginal cytokines or microbiota. Conclusions: Both DMPA-IM and NET-EN use did not lead to broad inflammatory or microbiota changes in the female genital tract of sub-Saharan African women. This suggests that NET-EN is likely a viable option for contraception in African women at high risk of BV and STIs.