Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 105
Filtrar
Más filtros













Base de datos
Intervalo de año de publicación
1.
Cell Mol Gastroenterol Hepatol ; 18(3): 101352, 2024 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-38697358

RESUMEN

Alcohol-associated hepatitis (AH) is an acute-on-chronic liver injury that occurs in patients with chronic alcohol-associated liver disease (ALD). Patients with severe AH have high short-term mortality and lack effective pharmacologic therapies. Inflammation is believed to be one of the key factors promoting AH progression and has been actively investigated as therapeutic targets over the last several decades, but no effective inflammatory targets have been identified so far. In this review, we discuss how inflammatory cells and the inflammatory mediators produced by these cells contribute to the development and progression of AH, with focus on neutrophils and macrophages. The crosstalk between inflammatory cells and liver nonparenchymal cells in the pathogenesis of AH is elaborated. We also deliberate the application of recent cutting-edge technologies in characterizing liver inflammation in AH. Finally, the potential therapeutic targets of inflammatory mediators for AH are briefly summarized.

2.
Am J Physiol Cell Physiol ; 326(5): C1556-C1562, 2024 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-38618702

RESUMEN

Healthy livers contain 80% of body resident macrophages known as Kupffer cells. In diseased livers, the number of Kupffer cells usually drops but is compensated by infiltration of monocyte-derived macrophages, some of which can differentiate into Kupffer-like cells. Early studies suggest that Kupffer cells play important roles in both promoting liver injury and liver regeneration. Yet, the distinction between the functionalities of resident and infiltrating macrophages is not always made. By using more specific macrophage markers and targeted cell depletion and single-cell RNA sequencing, recent studies revealed several subsets of monocyte-derived macrophages that play important functions in inducing liver damage and inflammation as well as in liver repair and regeneration. In this review, we discuss the different roles that hepatic macrophages play in promoting necrotic liver lesion resolution and dead cell clearance, as well as the targeting of these cells as potential tools for the development of novel therapies for acute liver failure and acute-on-chronic liver failure.


Asunto(s)
Macrófagos del Hígado , Regeneración Hepática , Hígado , Necrosis , Humanos , Animales , Hígado/patología , Hígado/metabolismo , Macrófagos del Hígado/metabolismo , Macrófagos del Hígado/patología , Macrófagos/metabolismo , Macrófagos/patología , Macrófagos/inmunología
5.
Nat Immunol ; 25(1): 54-65, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38062135

RESUMEN

The nature of activation signals is essential in determining T cell subset differentiation; however, the features that determine T cell subset preference acquired during intrathymic development remain elusive. Here we show that naive CD4+ T cells generated in the mouse thymic microenvironment lacking Scd1, encoding the enzyme catalyzing oleic acid (OA) production, exhibit enhanced regulatory T (Treg) cell differentiation and attenuated development of experimental autoimmune encephalomyelitis. Scd1 deletion in K14+ thymic epithelia recapitulated the enhanced Treg cell differentiation phenotype of Scd1-deficient mice. The dearth of OA permitted DOT1L to increase H3K79me2 levels at the Atp2a2 locus of thymocytes at the DN2-DN3 transition stage. Such epigenetic modification persisted in naive CD4+ T cells and facilitated Atp2a2 expression. Upon T cell receptor activation, ATP2A2 enhanced the activity of the calcium-NFAT1-Foxp3 axis to promote naive CD4+ T cells to differentiate into Treg cells. Therefore, OA availability is critical for preprogramming thymocytes with Treg cell differentiation propensities in the periphery.


Asunto(s)
Ácido Oléico , Timocitos , Animales , Ratones , Ácido Oléico/metabolismo , Timo , Linfocitos T Reguladores , Diferenciación Celular , Factores de Transcripción Forkhead/genética
6.
Elife ; 122023 Dec 06.
Artículo en Inglés | MEDLINE | ID: mdl-38055614

RESUMEN

The pathogenesis of antibodies in severe alcoholic hepatitis (SAH) remains unknown. We analyzed immunoglobulins (Ig) in explanted livers from SAH patients (n=45) undergoing liver transplantation and tissues from corresponding healthy donors (HD, n=10) and found massive deposition of IgG and IgA isotype antibodies associated with complement fragment C3d and C4d staining in ballooned hepatocytes in SAH livers. Ig extracted from SAH livers, but not patient serum exhibited hepatocyte killing efficacy. Employing human and Escherichia coli K12 proteome arrays, we profiled the antibodies extracted from explanted SAH, livers with other diseases, and HD livers. Compared with their counterparts extracted from livers with other diseases and HD, antibodies of IgG and IgA isotypes were highly accumulated in SAH and recognized a unique set of human proteins and E. coli antigens. Further, both Ig- and E. coli-captured Ig from SAH livers recognized common autoantigens enriched in several cellular components including cytosol and cytoplasm (IgG and IgA), nucleus, mitochondrion, and focal adhesion (IgG). Except IgM from primary biliary cholangitis livers, no common autoantigen was recognized by Ig- and E. coli-captured Ig from livers with other diseases. These findings demonstrate the presence of cross-reacting anti-bacterial IgG and IgA autoantibodies in SAH livers.


Asunto(s)
Hepatitis Alcohólica , Humanos , Escherichia coli , Inmunoglobulina A , Autoanticuerpos , Inmunoglobulina G , Inmunoglobulina M
7.
J Med Chem ; 66(17): 11985-12004, 2023 09 14.
Artículo en Inglés | MEDLINE | ID: mdl-37611316

RESUMEN

We have designed orally bioavailable, non-brain-penetrant antagonists of the cannabinoid-1 receptor (CB1R) with a built-in biguanide sensor to mimic 5'-adenosine monophosphate kinase (AMPK) activation for treating obesity-associated co-morbidities. A series of 3,4-diarylpyrazolines bearing rational pharmacophoric pendants designed to limit brain penetration were synthesized and evaluated in CB1R ligand binding assays and recombinant AMPK assays. The compounds displayed high CB1R binding affinity and potent CB1R antagonist activities and acted as AMPK activators. Select compounds showed good oral exposure, with compounds 36, 38-S, and 39-S showing <5% brain penetrance, attesting to peripheral restriction. In vivo studies of 38-S revealed decreased food intake and body weight reduction in diet-induced obese mice as well as oral in vivo efficacy of 38-S in ameliorating glucose tolerance and insulin resistance. The designed "cannabinoformin" four-arm CB1R antagonists could serve as potential leads for treatment of metabolic syndrome disorders with negligible neuropsychiatric side effects.


Asunto(s)
Cannabinoides , Enfermedades Metabólicas , Síndrome Metabólico , Animales , Ratones , Síndrome Metabólico/tratamiento farmacológico , Proteínas Quinasas Activadas por AMP , Biguanidas/farmacología , Biguanidas/uso terapéutico , Antagonistas de Receptores de Cannabinoides , Ratones Obesos
8.
J Clin Invest ; 133(15)2023 08 01.
Artículo en Inglés | MEDLINE | ID: mdl-37338984

RESUMEN

The liver can fully regenerate after partial resection, and its underlying mechanisms have been extensively studied. The liver can also rapidly regenerate after injury, with most studies focusing on hepatocyte proliferation; however, how hepatic necrotic lesions during acute or chronic liver diseases are eliminated and repaired remains obscure. Here, we demonstrate that monocyte-derived macrophages (MoMFs) were rapidly recruited to and encapsulated necrotic areas during immune-mediated liver injury and that this feature was essential in repairing necrotic lesions. At the early stage of injury, infiltrating MoMFs activated the Jagged1/notch homolog protein 2 (JAG1/NOTCH2) axis to induce cell death-resistant SRY-box transcription factor 9+ (SOX9+) hepatocytes near the necrotic lesions, which acted as a barrier from further injury. Subsequently, necrotic environment (hypoxia and dead cells) induced a cluster of complement 1q-positive (C1q+) MoMFs that promoted necrotic removal and liver repair, while Pdgfb+ MoMFs activated hepatic stellate cells (HSCs) to express α-smooth muscle actin and induce a strong contraction signal (YAP, pMLC) to squeeze and finally eliminate the necrotic lesions. In conclusion, MoMFs play a key role in repairing the necrotic lesions, not only by removing necrotic tissues, but also by inducing cell death-resistant hepatocytes to form a perinecrotic capsule and by activating α-smooth muscle actin-expressing HSCs to facilitate necrotic lesion resolution.


Asunto(s)
Actinas , Neoplasias Hepáticas , Humanos , Actinas/metabolismo , Hígado/metabolismo , Hepatocitos/metabolismo , Macrófagos/metabolismo , Células Estrelladas Hepáticas/metabolismo , Necrosis/metabolismo , Necrosis/patología , Neoplasias Hepáticas/metabolismo
9.
Hepatology ; 78(5): 1506-1524, 2023 11 01.
Artículo en Inglés | MEDLINE | ID: mdl-37129868

RESUMEN

BACKGROUND AND AIMS: Lipid accumulation induced by alcohol consumption is not only an early pathophysiological response but also a prerequisite for the progression of alcohol-associated liver disease (ALD). Alternative splicing regulates gene expression and protein diversity; dysregulation of this process is implicated in human liver diseases. However, how the alternative splicing regulation of lipid metabolism contributes to the pathogenesis of ALD remains undefined. APPROACH AND RESULTS: Serine-arginine-rich protein kinase 2 (SRPK2), a key kinase controlling alternative splicing, is activated in hepatocytes in response to alcohol, in mice with chronic-plus-binge alcohol feeding, and in patients with ALD. Such induction activates sterol regulatory element-binding protein 1 and promotes lipogenesis in ALD. Overexpression of FGF21 in transgenic mice abolishes alcohol-mediated induction of SRPK2 and its associated steatosis, lipotoxicity, and inflammation; these alcohol-induced pathologies are exacerbated in FGF21 knockout mice. Mechanistically, SRPK2 is required for alcohol-mediated impairment of serine-arginine splicing factor 10, which generates exon 7 inclusion in lipin 1 and triggers concurrent induction of lipogenic regulators-lipin 1ß and sterol regulatory element-binding protein 1. FGF21 suppresses alcohol-induced SRPK2 accumulation through mammalian target of rapamycin complex 1 inhibition-dependent degradation of SRPK2. Silencing SRPK2 rescues alcohol-induced splicing dysregulation and liver injury in FGF21 knockout mice. CONCLUSIONS: These studies reveal that (1) the regulation of alternative splicing by SRPK2 is implicated in lipogenesis in humans with ALD; (2) FGF21 is a key hepatokine that ameliorates ALD pathologies largely by inhibiting SRPK2; and (3) targeting SRPK2 signaling by FGF21 may offer potential therapeutic approaches to combat ALD.


Asunto(s)
Arginina Quinasa , Hepatopatías Alcohólicas , Humanos , Ratones , Animales , Proteínas Serina-Treonina Quinasas/metabolismo , Lipogénesis/genética , Proteína 1 de Unión a los Elementos Reguladores de Esteroles/metabolismo , Proteínas Quinasas/genética , Proteínas Quinasas/metabolismo , Arginina Quinasa/genética , Arginina Quinasa/metabolismo , Empalme Alternativo , Hígado/patología , Hepatopatías Alcohólicas/metabolismo , Etanol/toxicidad , Ratones Noqueados , Mamíferos/metabolismo
10.
Theranostics ; 13(7): 2210-2225, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37153733

RESUMEN

Background: Nonalcoholic steatohepatitis (NASH) is a leading cause of chronic liver diseases worldwide. There is a pressing clinical need to identify potential therapeutic targets for NASH treatment. Thioredoxin interacting protein (Txnip) is a stress responsive gene that has been implicated in the pathogenesis of NASH, but its exact role is not fully understood. Here, we investigated the liver- and gene-specific role of Txnip and its upstream/downstream signaling in the pathogenesis of NASH. Methods and Results: Using four independent NASH mouse models, we found that TXNIP protein abnormally accumulated in NASH mouse livers. A decrease in E3 ubiquitin ligase NEDD4L resulted in impaired TXNIP ubiquitination and its accumulation in the liver. TXNIP protein levels were positively correlated with that of CHOP, a major regulator of ER stress-mediated apoptosis, in NASH mouse liver. Moreover, gain- and loss-of-function studies showed that TXNIP increased protein not mRNA levels of Chop both in vitro and in vivo. Mechanistically, the C-terminus of TXNIP associated with the N-terminus of the α-helix domain of CHOP and decreased CHOP ubiquitination, thus increasing the stability of CHOP protein. Lastly, selective knockdown of Txnip by adenovirus-mediated shRNA (not targets Txnip antisense lncRNA) delivery in the livers of both young and aged NASH mice suppressed the expression of CHOP and its downstream apoptotic pathway, and ameliorated NASH by reducing hepatic apoptosis, inflammation, and fibrosis. Conclusions: Our study revealed a pathogenic role of hepatic TXNIP in NASH and identified a novel NEDD4L-TXNIP-CHOP axis in the pathogenesis of NASH.


Asunto(s)
Enfermedad del Hígado Graso no Alcohólico , Ratones , Animales , Enfermedad del Hígado Graso no Alcohólico/metabolismo , Hígado/metabolismo , Inflamación/metabolismo , Apoptosis , Transducción de Señal/genética , Ratones Endogámicos C57BL , Proteínas Portadoras/genética , Proteínas Portadoras/metabolismo , Tiorredoxinas/genética , Tiorredoxinas/metabolismo
11.
bioRxiv ; 2023 Feb 23.
Artículo en Inglés | MEDLINE | ID: mdl-36865259

RESUMEN

The pathogenesis of antibodies in severe alcoholic hepatitis (SAH) remains unknown. We sought to determine if there was antibody deposition in SAH livers and whether antibodies extracted from SAH livers were cross-reactive against both bacterial antigens and human proteins. We analyzed immunoglobulins (Ig) in explanted livers from SAH patients (n=45) undergoing liver transplantation and tissue from corresponding healthy donors (HD, n=10) and found massive deposition of IgG and IgA isotype antibodies associated with complement fragment C3d and C4d staining in ballooned hepatocytes in SAH livers. Ig extracted from SAH livers, but not patient serum exhibited hepatocyte killing efficacy in an antibody-dependent cell-mediated cytotoxicity (ADCC) assay. Employing human proteome arrays, we profiled the antibodies extracted from explanted SAH, alcoholic cirrhosis (AC), nonalcoholic steatohepatitis (NASH), primary biliary cholangitis (PBC), autoimmune hepatitis (AIH), hepatitis B virus (HBV), hepatitis C virus (HCV) and HD livers and found that antibodies of IgG and IgA isotypes were highly accumulated in SAH and recognized a unique set of human proteins as autoantigens. The use of an E. coli K12 proteome array revealed the presence of unique anti- E. coli antibodies in SAH, AC or PBC livers. Further, both Ig and E. coli captured Ig from SAH livers recognized common autoantigens enriched in several cellular components including cytosol and cytoplasm (IgG and IgA), nucleus, mitochondrion and focal adhesion (IgG). Except IgM from PBC livers, no common autoantigen was recognized by Ig and E. coli captured Ig from AC, HBV, HCV, NASH or AIH suggesting no cross-reacting anti- E. coli autoantibodies. The presence of cross-reacting anti-bacterial IgG and IgA autoantibodies in the liver may participate in the pathogenesis of SAH.

12.
Gut ; 72(10): 1942-1958, 2023 10.
Artículo en Inglés | MEDLINE | ID: mdl-36593103

RESUMEN

OBJECTIVE: The current treatment for hepatocellular carcinoma (HCC) to block angiogenesis and immunosuppression provides some benefits only for a subset of patients with HCC, thus optimised therapeutic regimens are unmet needs, which require a thorough understanding of the underlying mechanisms by which tumour cells orchestrate an inflamed tumour microenvironment with significant myeloid cell infiltration. MicroRNA-223 (miR-223) is highly expressed in myeloid cells but its role in regulating tumour microenvironment remains unknown. DESIGN: Wild-type and miR-223 knockout mice were subjected to two mouse models of inflammation-associated HCC induced by injection of diethylnitrosamine (DEN) or orthotopic HCC cell implantation in chronic carbon tetrachloride (CCl4)-treated mice. RESULTS: Genetic deletion of miR-223 markedly exacerbated tumourigenesis in inflammation-associated HCC. Compared with wild-type mice, miR-223 knockout mice had more infiltrated programmed cell death 1 (PD-1+) T cells and programmed cell death ligand 1 (PD-L1+) macrophages after DEN+CCl4 administration. Bioinformatic analyses of RNA sequencing data revealed a strong correlation between miR-223 levels and tumour hypoxia, a condition that is well-documented to regulate PD-1/PD-L1. In vivo and in vitro mechanistic studies demonstrated that miR-223 did not directly target PD-1 and PD-L1 in immune cells rather than indirectly downregulated them by modulating tumour microenvironment via the suppression of hypoxia-inducible factor 1α-driven CD39/CD73-adenosine pathway in HCC. Moreover, gene delivery of miR-223 via adenovirus inhibited angiogenesis and hypoxia-mediated PD-1/PD-L1 activation in both HCC models, thereby hindering HCC progression. CONCLUSION: The miR-223 plays a critical role in modulating hypoxia-induced tumour immunosuppression and angiogenesis, which may serve as a novel therapeutic target for HCC.


Asunto(s)
Carcinoma Hepatocelular , Neoplasias Hepáticas , MicroARNs , Ratones , Animales , Carcinoma Hepatocelular/patología , Neoplasias Hepáticas/patología , Antígeno B7-H1 , Receptor de Muerte Celular Programada 1 , Terapia de Inmunosupresión , Carcinogénesis , Ratones Noqueados , MicroARNs/genética , Inflamación , Hipoxia , Microambiente Tumoral
13.
Cell Mol Gastroenterol Hepatol ; 15(2): 281-306, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36243320

RESUMEN

BACKGROUND & AIMS: Binge drinking in patients with metabolic syndrome accelerates the development of alcohol-associated liver disease. However, the underlying mechanisms remain elusive. We investigated if oxidative and nonoxidative alcohol metabolism pathways, diet-induced obesity, and adipose tissues influenced the development of acute liver injury in a single ethanol binge model. METHODS: A single ethanol binge was administered to chow-fed or high-fat diet (HFD)-fed wild-type and genetically modified mice. RESULTS: Oral administration of a single dose of ethanol induced acute liver injury and hepatic endoplasmic reticulum (ER) stress in chow- or HFD-fed mice. Disruption of the Adh1 gene increased blood ethanol concentration and exacerbated acute ethanol-induced ER stress and liver injury in both chow-fed and HFD-fed mice, while disruption of the Aldh2 gene did not affect such hepatic injury despite high blood acetaldehyde levels. Mechanistic studies showed that alcohol, not acetaldehyde, promoted hepatic ER stress, fatty acid synthesis, and increased adipocyte death and lipolysis, contributing to acute liver injury. Increased serum fatty acid ethyl esters (FAEEs), which are formed by an enzyme-mediated esterification of ethanol with fatty acids, were detected in mice after ethanol gavage, with higher levels in Adh1 knockout mice than in wild-type mice. Deletion of the Ces1d gene in mice markedly reduced the acute ethanol-induced increase of blood FAEE levels with a slight but significant reduction of serum aminotransferase levels. CONCLUSIONS: Ethanol and its nonoxidative metabolites, FAEEs, not acetaldehyde, promoted acute alcohol-induced liver injury by inducing ER stress, adipocyte death, and lipolysis.


Asunto(s)
Enfermedad Hepática Inducida por Sustancias y Drogas , Estrés del Retículo Endoplásmico , Etanol , Lipólisis , Animales , Ratones , Acetaldehído/metabolismo , Adipocitos/metabolismo , Ésteres/metabolismo , Etanol/toxicidad , Ácidos Grasos/metabolismo , Hígado/metabolismo
14.
Alcohol Clin Exp Res ; 46(12): 2163-2176, 2022 12.
Artículo en Inglés | MEDLINE | ID: mdl-36224745

RESUMEN

BACKGROUND: The chronic-plus-binge model of ethanol consumption, where chronically (8-week) ethanol-fed mice are gavaged a single dose of ethanol (E8G1), is known to induce steatohepatitis in mice. However, how chronically ethanol-fed mice respond to multiple binges of ethanol remains unknown. METHODS: We extended the E8G1 model to three gavages of ethanol (E8G3) spaced 24 h apart, sacrificed each group 9 h after the final gavage, analyzed liver injury, and examined gene expression changes using microarray analyses in each group to identify mechanisms contributing to liver responses to binge ethanol. RESULTS: Surprisingly, E8G3 treatment induced lower levels of liver injury, steatosis, inflammation, and fibrosis as compared to mice after E8G1 treatment. Microarray analyses identified several pathways that may contribute to the reduced liver injury after E8G3 treatment compared to E8G1 treatment. The gene encoding cytochrome P450 2B10 (Cyp2b10) was one of the top upregulated genes in the E8G1 group and was further upregulated in the E8G3 group, but only moderately induced after chronic ethanol consumption, as confirmed by RT-qPCR and western blot analyses. Genetic disruption of Cyp2b10 worsened liver injury in E8G1 and E8G3 mice with higher blood ethanol levels compared to wild-type control mice, while in vitro experiments revealed that CYP2b10 did not directly promote ethanol metabolism. Metabolomic analyses revealed significant differences in hepatic metabolites from E8G1-treated Cyp2b10 knockout and WT mice, and these metabolic alterations may contribute to the reduced liver injury in Cyp2b10 knockout mice. CONCLUSION: Hepatic Cyp2b10 expression is highly induced after ethanol binge, and such upregulation reduces acute-on-chronic ethanol-induced liver injury via the indirect modification of ethanol metabolism.


Asunto(s)
Enfermedad Hepática Crónica Inducida por Sustancias y Drogas , Hígado Graso , Animales , Ratones , Enfermedad Hepática Crónica Inducida por Sustancias y Drogas/genética , Enfermedad Hepática Crónica Inducida por Sustancias y Drogas/metabolismo , Etanol/farmacología , Hígado Graso/metabolismo , Hígado/metabolismo , Ratones Endogámicos C57BL , Ratones Noqueados
15.
Hepatol Commun ; 6(12): 3335-3348, 2022 12.
Artículo en Inglés | MEDLINE | ID: mdl-36200169

RESUMEN

Adipose tissue dysfunction is closely associated with the development and progression of nonalcoholic fatty liver disease (NAFLD). Recent studies have implied an important role of prohibitin-1 (PHB1) in adipose tissue function. In the current study, we aimed to explore the function of adipocyte PHB1 in the development and progression of NAFLD. The PHB1 protein levels in adipose tissues were markedly decreased in mice fed a high-fat diet (HFD) compared to those fed a chow diet. To explore the function of adipocyte PHB1 in the progression of NAFLD, mice with adipocyte-specific (adipo) deletion of Phb1 (Phb1adipo-/- mice) were generated. Notably, Phb1adipo-/- mice did not develop obesity but displayed severe liver steatosis under HFD feeding. Compared to HFD-fed wild-type (WT) mice, HFD-fed Phb1adipo-/- mice displayed dramatically lower fat mass with significantly decreased levels of total adipose tissue inflammation, including macrophage and neutrophil number as well as the expression of inflammatory mediators. To our surprise, although liver steatosis in Phb1adipo-/- mice was much more severe, liver inflammation and fibrosis were similar to WT mice after HFD feeding. RNA sequencing analyses revealed that the interferon pathway was markedly suppressed while the bone morphogenetic protein 2 pathway was significantly up-regulated in the liver of HFD-fed Phb1adipo-/- mice compared with HFD-fed WT mice. Conclusion: HFD-fed Phb1adipo-/- mice display a subtype of the lean NAFLD phenotype with severe hepatic steatosis despite low adipose mass. This subtype of the lean NAFLD phenotype has similar inflammation and fibrosis as obese NAFLD in HFD-fed WT mice; this is partially due to reduced total adipose tissue inflammation and the hepatic interferon pathway.


Asunto(s)
Hepatitis , Enfermedad del Hígado Graso no Alcohólico , Ratones , Animales , Dieta Alta en Grasa/efectos adversos , Enfermedad del Hígado Graso no Alcohólico/etiología , Prohibitinas , Adipocitos/metabolismo , Fibrosis , Obesidad/genética , Inflamación/metabolismo , Interferones
16.
Front Psychiatry ; 13: 931280, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36032219

RESUMEN

Background: High levels of sleep disturbances reported among individuals with alcohol use disorder (AUD) can stimulate inflammatory gene expression, and in turn, may alter pro-inflammatory cytokines levels. We aimed to investigate associations between pro-inflammatory cytokine markers with subjective measures of sleep quality, psychological variables and alcohol consumption among individuals with AUD. Methods: This exploratory study is comprised of individuals with AUD (n = 50) and healthy volunteers (n = 14). Spearman correlation was used to investigate correlations between plasma cytokine levels and clinical variables of interest (liver and inflammatory markers, sleep quality, patient reported anxiety/depression scores, and presence of mood and/or anxiety disorders (DSM IV/5); and history of alcohol use variables. Results: The AUD group was significantly older, with poorer sleep quality, higher anxiety/depression scores, and higher average drinks per day as compared to controls. Within the AUD group, IL-8 and MCP-1 had positive significant correlations with sleep, anxiety, depression and drinking variables. Specifically, higher levels of MCP-1 were associated with poorer sleep (p = 0.004), higher scores of anxiety (p = 0.006) and depression (p < 0.001), and higher number of drinking days (p = 0.002), average drinks per day (p < 0.001), heavy drinking days (p < 0.001) and total number of drinks (p < 0.001). The multiple linear regression model for MCP-1 showed that after controlling for sleep status and heavy drinking days, older participants (p = 0.003) with more drinks per day (p = 0.016), and higher alkaline phosphatase level (p = 0.001) had higher MCP-1 level. Conclusion: This exploratory analysis revealed associations with cytokines MCP-1 and IL-8 and drinking consumption, sleep quality, and anxiety and depression in the AUD group. Furthermore, inflammatory and liver markers were highly correlated with certain pro-inflammatory cytokines in the AUD group suggesting a possible relationship between chronic alcohol use and inflammation. These associations may contribute to prolonged inflammatory responses and potentially higher risk of co-morbid chronic diseases.

17.
J Clin Invest ; 132(14)2022 07 15.
Artículo en Inglés | MEDLINE | ID: mdl-35838051

RESUMEN

Intrahepatic neutrophil infiltration has been implicated in severe alcoholic hepatitis (SAH) pathogenesis; however, the mechanism underlying neutrophil-induced injury in SAH remains obscure. This translational study aims to describe the patterns of intrahepatic neutrophil infiltration and its involvement in SAH pathogenesis. Immunohistochemistry analyses of explanted livers identified two SAH phenotypes despite a similar clinical presentation, one with high intrahepatic neutrophils (Neuhi), but low levels of CD8+ T cells, and vice versa. RNA-Seq analyses demonstrated that neutrophil cytosolic factor 1 (NCF1), a key factor in controlling neutrophilic ROS production, was upregulated and correlated with hepatic inflammation and disease progression. To study specifically the mechanisms related to Neuhi in AH patients and liver injury, we used the mouse model of chronic-plus-binge ethanol feeding and found that myeloid-specific deletion of the Ncf1 gene abolished ethanol-induced hepatic inflammation and steatosis. RNA-Seq analysis and the data from experimental models revealed that neutrophilic NCF1-dependent ROS promoted alcoholic hepatitis (AH) by inhibiting AMP-activated protein kinase (a key regulator of lipid metabolism) and microRNA-223 (a key antiinflammatory and antifibrotic microRNA). In conclusion, two distinct histopathological phenotypes based on liver immune phenotyping are observed in SAH patients, suggesting a separate mechanism driving liver injury and/or failure in these patients.


Asunto(s)
Hepatitis Alcohólica , Hepatopatías Alcohólicas , Animales , Etanol/efectos adversos , Hepatitis Alcohólica/genética , Hepatitis Alcohólica/metabolismo , Inflamación/patología , Hígado/metabolismo , Hepatopatías Alcohólicas/genética , Hepatopatías Alcohólicas/metabolismo , Ratones , Ratones Endogámicos C57BL , Fenotipo , Especies Reactivas de Oxígeno/metabolismo
18.
Int J Biol Sci ; 18(11): 4341-4356, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35864952

RESUMEN

Background and aims: Vasoactive intestinal polypeptide type-I receptor (VIPR1) overexpression has been reported in numerous types of malignancies and utilized to develop novel target therapeutics and radiolabeled VIP analogue-based tumor imaging technology, but its role in liver carcinogenesis has not been explored. In the current study, we investigated the role of the VIP/VIPR1 signaling in controlling hepatocellular carcinoma (HCC) progression. Approach and results: By analyzing clinical samples, we found the expression level of VIPR1 was downregulated in human HCC tissues, which was correlated with advanced clinical stages, tumor growth, recurrence, and poor outcomes of HCC clinically. In vitro and in vivo studies revealed that activation of VIPR1 by VIP markedly inhibited HCC growth and metastasis. Intriguingly, transcriptome sequencing analyses revealed that activation of VIPR1 by VIP regulated arginine biosynthesis. Mechanistical studies in cultured HCC cells demonstrated that VIP treatment partially restored the expression of arginine anabolic key enzyme argininosuccinate synthase (ASS1), and to some extent, inhibited de novo pyrimidine synthetic pathway by downregulating the activation of CAD (carbamoyl-phosphate synthetase 2, aspartate transcarbamylase, and dihydroorotase). VIP treatment upregulated ASS1 and subsequently suppressed CAD phosphorylation in an mTOR/p70S6K signaling dependent manner. Clinically, we found human HCC samples were associated with downregulation of ASS1 but upregulation of CAD phosphorylation, and that VIPR1 levels positively correlated with ASS1 levels and serum levels of urea, the end product of the urea cycle and arginine metabolism in HCC. Conclusions: Loss of VIPR1 expression in HCC facilitates CAD phosphorylation and tumor progression, and restoration of VIPR1 and treatment with the VIPR1 agonist may be a promising approach for HCC treatment.


Asunto(s)
Carcinoma Hepatocelular , Neoplasias Hepáticas , Arginina/uso terapéutico , Argininosuccinato Sintasa/metabolismo , Carcinoma Hepatocelular/metabolismo , Línea Celular Tumoral , Humanos , Neoplasias Hepáticas/metabolismo , Pirimidinas/uso terapéutico , Receptores de Tipo I del Polipéptido Intestinal Vasoactivo , Urea/uso terapéutico
19.
Hepatology ; 75(3): 646-660, 2022 03.
Artículo en Inglés | MEDLINE | ID: mdl-34510484

RESUMEN

BACKGROUND AND AIMS: Aging exacerbates liver neutrophil infiltration and alcohol-associated liver disease (ALD) in mice and humans, but the underlying mechanisms remain obscure. This study aimed to examine the effect of aging and alcohol consumption on neutrophilic Sirtuin 1 (SIRT1) and microRNA-223 (miR-223), and their contribution to ALD pathogeneses. APPROACH AND RESULTS: Young and aged myeloid-specific Sirt1 knockout mice were subjected to chronic-plus-binge ethanol feeding. Blood samples from healthy controls and patients with chronic alcohol drinking who presented with acute intoxication were analyzed. Neutrophilic Sirt1 and miR-223 expression were down-regulated in aged mice compared with young mice. Deletion of the Sirt1 gene in myeloid cells including neutrophils exacerbated chronic-plus-binge ethanol-induced liver injury and inflammation and down-regulated neutrophilic miR-223 expression. Immunoprecipitation experiments revealed that SIRT1 promoted C/EBPα deacetylation by directly interacting with C/EBPα, a key transcription factor that controls miR-223 biogenesis, and subsequently elevated miR-223 expression in neutrophils. Importantly, down-regulation of SIRT1 and miR-223 expression was also observed in circulating neutrophils from middle-aged and elderly subjects compared with those from young individuals. Chronic alcohol users with acute intoxication had a reduction in neutrophilic SIRT1 expression in young and middle-aged patients, with a greater reduction in the latter group. The neutrophilic SIRT1 expression correlated with neutrophilic miR-223 and serum alanine transaminase levels in those patients. CONCLUSIONS: Aging increases the susceptibility of alcohol-induced liver injury in mice and humans through the down-regulation of the neutrophilic SIRT1-C/EBPα-miR-223 axis, which could be a therapeutic target for the prevention and/or treatment of ALD.


Asunto(s)
Envejecimiento/fisiología , Hepatopatías Alcohólicas , Hígado , MicroARNs , Infiltración Neutrófila/fisiología , Sirtuina 1/metabolismo , Factores de Edad , Consumo de Bebidas Alcohólicas/efectos adversos , Animales , Enfermedad Hepática Crónica Inducida por Sustancias y Drogas/etiología , Enfermedad Hepática Crónica Inducida por Sustancias y Drogas/metabolismo , Enfermedad Hepática Crónica Inducida por Sustancias y Drogas/patología , Regulación hacia Abajo , Regulación de la Expresión Génica , Humanos , Hígado/metabolismo , Hígado/patología , Hepatopatías Alcohólicas/metabolismo , Hepatopatías Alcohólicas/patología , Ratones , Ratones Noqueados , MicroARNs/biosíntesis , MicroARNs/metabolismo , Células Mieloides/metabolismo , Sirtuina 1/genética
20.
Cell Mol Gastroenterol Hepatol ; 13(1): 151-171, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-34390865

RESUMEN

BACKGROUND & AIMS: Nonalcoholic steatohepatitis (NASH) is a leading cause of chronic liver disease, characterized by steatosis and hallmark liver neutrophil infiltration. NASH also is associated with adipose tissue inflammation, but the role of adipose tissue inflammation in NASH pathogenesis remains obscure. The aim of this study was to investigate the interplay between neutrophil recruitment in adipose tissue and the progression of NASH. METHODS: A mouse model of NASH was obtained by high-fat diet (HFD) feeding plus adenovirus-Cxcl1 overexpression (HFD+AdCxcl1). Genetic deletion of E-selectin (Sele) and treatment with an S100A9 inhibitor (Paquinimod) were investigated using this model. RESULTS: By analyzing transcriptomic data sets of adipose tissue from NASH patients, we found that E-selectin, a key adhesion molecule for neutrophils, is the highest up-regulated gene among neutrophil recruitment-related factors in adipose tissue of NASH patients compared with those in patients with simple steatosis. A marked up-regulation of Sele in adipose tissue also was observed in HFD+AdCxcl1 mice. The HFD+AdCxcl1-induced NASH phenotype was ameliorated in Sele knockout mice and was accompanied by reduced lipolysis and inflammation in adipose tissue, which resulted in decreased serum free fatty acids and proinflammatory adipokines. S100A8/A9, a major proinflammatory protein secreted by neutrophils, was highly increased in adipose tissue of HFD+AdCxcl1 mice. This increase was blunted in the Sele knockout mice. Therapeutically, treatment with the S100A9 inhibitor Paquinimod reduced lipolysis, inflammation, and adipokine production, ameliorating the NASH phenotype in mice. CONCLUSIONS: E-selectin plays an important role in inducing neutrophil recruitment in adipose tissue, which subsequently promotes inflammation and lipolysis via the production of S100A8/A9, thereby exacerbating the steatosis-to-NASH progression. Targeting adipose tissue inflammation therefore may represent a potential novel therapy for treatment of NASH.


Asunto(s)
Enfermedad del Hígado Graso no Alcohólico , Tejido Adiposo/metabolismo , Animales , Selectina E/metabolismo , Humanos , Inflamación/patología , Lipólisis , Ratones , Ratones Endogámicos C57BL , Enfermedad del Hígado Graso no Alcohólico/patología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA