Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 276
Filtrar
1.
iScience ; 27(5): 109721, 2024 May 17.
Artículo en Inglés | MEDLINE | ID: mdl-38706853

RESUMEN

This article designs and implements a fast and high-precision multi-robot environment modeling method based on bidirectional filtering and scene identification. To solve the problem of feature tracking failure caused by large angle rotation, a bidirectional filtering mechanism is introduced to improve the error-matching elimination algorithm. A global key frame database for multiple robots is proposed based on a pretraining dictionary to convert images into a bag of words vectors. The images captured by different sub-robots are compared with the database for similarity score calculation, so as to realize fast identification and search of similar scenes. The coordinate transformation from local map to global map and the cooperative SLAM exploration of multiple robots is completed by the best matching image and the transformation matrix. The experimental results show that the proposed algorithm can effectively close the predicted trajectory of the sub-robot, thus achieving high-precision collaborative environment modeling.

2.
J Colloid Interface Sci ; 669: 569-577, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-38729005

RESUMEN

The capacitance of a co-catalyst can be likened to a "double-edged sword". Α co-catalysts with high capacitance can store photoexcited electrons, thereby facilitating charge separation within the host catalyst. However, this property simultaneously restricts electron release. Both effects are enhanced with an increasing capacitance value, implying that excessively high capacitance can significantly hinder the photocatalytic hydrogen (H2) production reaction. Herein, we have designed a metal-organic framework (MOF) -derived carbon-coated nickel phosphide (C-Ni5P4) as the co-catalyst of cadmium sulfide (CdS). When C-Ni5P4 and CdS are closely interconnected, electrons spontaneously migrate from CdS to C-Ni5P4 under irradiation due to the higher work function (WF) of C-Ni5P4 compared to CdS. Most importantly, although the WF of C-Ni5P4 is 0.1 eV lower than that of Ni5P4, its specific capacitance (1.2 mF/cm2) is also lower than that of Ni5P4 (1.3 mF/cm2). This difference dramatically promotes electron release. Thereby exerting a strong positive effect on capacitance catalysis. Therefore, 7% C-Ni5P4/CdS exhibits exceptional cyclic stability and has a remarkably high activity level of 12283 µmol/h/g and 3.8 times as many as 3.0 %Ni5P4/CdS. This study provides a theoretical basis for the advancement of photocatalysts with high efficiency in H2 production and is expected to be applied in other fields of photocatalysis.

3.
Sci Adv ; 10(22): eadn0155, 2024 May 31.
Artículo en Inglés | MEDLINE | ID: mdl-38809987

RESUMEN

Methane-derived authigenic carbonate often constitutes the sole remaining record of relic methane seeps. The clumped (∆47) and oxygen isotopic composition of seep carbonates often yield inaccurate temperatures, attributed to kinetic isotope effects and modification of seawater isotope composition by hydrate water. Here, we analyzed the dual-clumped isotope (∆47/∆48) composition of authigenic carbonate from a modern methane seep. We demonstrate that aragonite forms closest to isotopic equilibrium such that its ∆47 can directly yield the correct formational temperature, whereas calcite is unambiguously biased by kinetic isotope effects. Numerical models show that the observed bias in the isotopic composition arises from rate-limiting dehydration/dehydroxylation of HCO3- alongside diffusive fractionation, which can be corrected for with analysis of carbonate ∆47/∆48 values. We demonstrate the utility of dual-clumped isotope analysis for studying seep carbonates, as it reveals the origin and magnitude of kinetic biases and can be used to reconstruct paleotemperature and seawater δ18O.

4.
Zhongguo Zhong Yao Za Zhi ; 49(6): 1494-1505, 2024 Mar.
Artículo en Chino | MEDLINE | ID: mdl-38621933

RESUMEN

Mentha canadensis is a traditional Chinese herb with great medicinal and economic value. Abscisic acid(ABA) receptor PYLs have important roles in plant growth and development and response to adversity. The M. canadensis McPYL4 gene was cloned, and its protein characteristics, gene expression, and protein interactions were analyzed, so as to provide genetic resources for genetic improvement and molecular design breeding for M. canadensis resistance. Therefore, the protein characteristics, subcellular localization, gene expression pattern, and protein interactions of McPYL4 were analyzed by bioinformatics analysis, transient expression of tobacco leaves, RT-qPCR, and yeast two-hybrid(Y2H) techniques. The results showed that the McPYL4 gene was 621 bp in length, encoding 206 amino acids, and its protein had the conserved structural domain of SRPBCC and was highly homologous with Salvia miltiorrhiza SmPYL4. McPYL4 protein was localized to the cell membrane and nucleus. The McPYL4 gene was expressed in all tissue of M. canadensis, with the highest expression in roots, followed by leaves, and it showed a pattern of up-regulation followed by down-regulation in leaves 1-8. In both leaves and roots, the McPYL4 gene responded to the exogenous hormones ABA, MeJA, and the treatments of drought, AlCl_3, NaCl, CdCl_2, and CuCl_2. Moreover, McPYL4 was up-regulated for expression in both leaves and roots under the MeJA treatment, as well as in leaves treated with AlCl_3 stress for 1 h, whereas McPYL4 showed a tendency to be down-regulated in both leaves and roots under other treatments. Protein interactions showed that McPYL4 interacted with AtABI proteins in an ABA-independent manner. This study demonstrated that McPYL4 responded to ABA, JA, and several abiotic stress treatments, and McPYL4 was involved in ABA signaling in M. canadensis and thus in the regulation of leaf development and various abiotic stresses in M. canadensis.


Asunto(s)
Ácido Abscísico , Mentha , Ácido Abscísico/farmacología , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Hojas de la Planta/genética , Hojas de la Planta/metabolismo , Clonación Molecular , Regulación de la Expresión Génica de las Plantas , Estrés Fisiológico/genética , Sequías
5.
Sci Adv ; 10(8): eadk4694, 2024 Feb 23.
Artículo en Inglés | MEDLINE | ID: mdl-38381829

RESUMEN

Cardiac regeneration requires coordinated participation of multiple cell types whereby their communications result in transient activation of proregenerative cell states. Although the molecular characteristics and lineage origins of these activated cell states and their contribution to cardiac regeneration have been studied, the extracellular signaling and the intrinsic genetic program underlying the activation of the transient functional cell states remain largely unexplored. In this study, we delineated the chromatin landscapes of the noncardiomyocytes (nonCMs) of the regenerating heart at the single-cell level and inferred the cis-regulatory architectures and trans-acting factors that control cell type-specific gene expression programs. Moreover, further motif analysis and cell-specific genetic manipulations suggest that the macrophage-derived inflammatory signal tumor necrosis factor-α, acting via its downstream transcription factor complex activator protein-1, functions cooperatively with discrete transcription regulators to activate respective nonCM cell types critical for cardiac regeneration. Thus, our study defines the regulatory architectures and intercellular communication principles in zebrafish heart regeneration.


Asunto(s)
Cromatina , Pez Cebra , Animales , Cromatina/genética , Pez Cebra/genética , Regulación del Desarrollo de la Expresión Génica , Corazón/fisiología , Regeneración/genética
6.
ACS Infect Dis ; 10(1): 196-214, 2024 01 12.
Artículo en Inglés | MEDLINE | ID: mdl-38127778

RESUMEN

Staphylococcus aureus, including MRSA strains, poses significant health risks, imposing a significant disease burden and mortality. We investigate butyrolactone I (BL-1), a marine-derived metabolite from Aspergillus terreus, enhancing aminoglycoside efficacy against MRSA. A promising synergy is observed with BL-1 and various aminoglycosides, marked by low fractional inhibitory concentration indexes (FICIs < 0.5). Comprehensive studies utilizing USA300 MRSA and gentamicin reveal a remarkable one-fourth reduction in minimum inhibitory concentration (MIC) with 20 µg/mL BL-1. A relative abundance assay indicates that BL-1 enhances gentamicin uptake while restraining extracellular presence, involving intricate transmembrane signaling and molecular interactions. RNA-Seq analysis yielded an unexpected revelation, unveiling a distinctive gene expression profile and distinguishing it from other treatment approaches. Furthermore, meticulous analyses validated the extensive perturbations induced by BL-1 exposure, affecting diverse biological functions, encompassing glycolysis, amino acid metabolisms, substance transmembrane transport, and virulence generation. These valuable insights inspired further confirmation of bacterial virulence and the modulation of membrane permeability resulting from BL-1 treatment. Phenotypic validations corroborated our observations, revealing reduced membrane permeability and hemolytic toxicity, albeit demanding a deeper comprehension of the intricate interplay underlying these actions. Our study contributes crucial mechanistic insights to the development of therapeutic strategies against this notorious pathogen and the judicious employment of aminoglycosides. Additionally, it elucidates marine-derived metabolites' ecological and functional roles, exemplified by fungal quorum sensing signals. These compounds could give producers a competitive edge, inhibiting microorganism proliferation and suggesting novel approaches for combating resistant pathogens.


Asunto(s)
4-Butirolactona/análogos & derivados , Staphylococcus aureus Resistente a Meticilina , Gentamicinas/farmacología , Antibacterianos/farmacología , Aminoglicósidos/farmacología
7.
Bioresour Technol ; 394: 130268, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38154737

RESUMEN

The complexity of biomass components leads to significant variations in the performance of biomass-based carbon dots (CDs). To shed light on this matter, this study presents a comparative analysis of the fluorescence properties of CDs using pure cellulose, lignin, and protein as models. Three CDs showed different fluorescent properties, resulting from the structure difference and carbonization behavior in the hydrothermal. The relatively gentle thermal degradation of proteins allows the macromolecular structure of amino acids to be preserved. This preservation results in a more regular lattice structure, a larger sp2 domain size, and N-doping, which contribute to the highest quantum yield (QY) of 8.7% of the CDs. In contrast, cellulose undergoes more severe thermal degradation with large amounts of small molecules generated, resulting in the CDs with fewer surface defects, more irregular lattice structures, and lower QY. These results provide a guideline for the design of carbon dots from different biomass.


Asunto(s)
Celulosa , Lignina , Celulosa/química , Carbono/química , Biomasa , Fluorescencia , Colorantes , Colorantes Fluorescentes/química
8.
Zhongguo Zhong Yao Za Zhi ; 48(19): 5172-5180, 2023 Oct.
Artículo en Chino | MEDLINE | ID: mdl-38114107

RESUMEN

Excessive application of chemical fertilizer has caused many problems in Angelica dahurica var. formosana planting, such as yield decline and quality degradation. In order to promote the green cultivation mode of A. dahurica var. formosana and explore rhizosphere fungus resources, the rhizosphere fungi with nitrogen fixation, phosphorus solubilization, potassium solubilization, iron-producing carrier, and IAA-producing properties were isolated and screened in the rhizosphere of A. dahurica var. formosana from the genuine and non-genuine areas, respectively. The strains were identified comprehensively in light of the morphological characteristics and ITS rDNA sequences, and the growth-promoting effect of the screened strains was verified by pot experiment. The results showed that 37 strains of growth-promoting fungi were isolated and screened from the rhizosphere of A. dahurica var. formosana, mostly belonging to Fusarium. The cultured rhizosphere growth-promoting fungi of A. dahurica var. formosana were more abundant and diverse in the genuine producing areas than in the non-genuine producing areas. Among all strains, Aspergillus niger ZJ-17 had the strongest growth promotion potential. Under the condition of no fertilization outdoors, ZJ-17 inoculation significantly promoted the growth, yield, and accumulation of effective components of A. dahurica var. formosana planted in the soil of genuine and non-genuine producing areas, with yield increases of 73.59% and 37.84%, respectively. To a certain extent, it alleviated the restriction without additional fertilization on the growth of A. dahurica var. formosana. Therefore, A. niger ZJ-17 has great application prospects in increasing yield and quality of A. dahurica var. formosana and reducing fertilizer application and can be actually applied in promoting the growth of A. dahurica var. formosana and producing biofertilizer.


Asunto(s)
Angelica , Fertilizantes , Rizosfera , Angelica/química , Hongos/genética , Fósforo
9.
Cell Death Dis ; 14(8): 570, 2023 08 28.
Artículo en Inglés | MEDLINE | ID: mdl-37640747

RESUMEN

Retinal ganglion cells (RGCs), the sole output neurons in the eyes, are vulnerable to diverse insults in many pathological conditions, which can lead to permanent vision dysfunction. However, the molecular and cellular mechanisms that contribute to protecting RGCs and their axons from injuries are not completely known. Here, we identify that Porf-2, a member of the Rho GTPase activating protein gene group, is upregulated in RGCs after optic nerve crush. Knockdown of Porf-2 protects RGCs from apoptosis and promotes long-distance optic nerve regeneration after crush injury in both young and aged mice in vivo. In vitro, we find that inhibition of Porf-2 induces axon growth and growth cone formation in retinal explants. Inhibition of Porf-2 provides long-term and post-injury protection to RGCs and eventually promotes the recovery of visual function after crush injury in mice. These findings reveal a neuroprotective impact of the inhibition of Porf-2 on RGC survival and axon regeneration after optic nerve injury, providing a potential therapeutic strategy for vision restoration in patients with traumatic optic neuropathy.


Asunto(s)
Lesiones por Aplastamiento , Traumatismos del Nervio Óptico , Traumatismos de los Nervios Periféricos , Animales , Ratones , Traumatismos del Nervio Óptico/genética , Axones , Regeneración Nerviosa , Retina , Nervio Óptico , Células Ganglionares de la Retina , Lesiones por Aplastamiento/genética
11.
Discov Oncol ; 14(1): 131, 2023 Jul 18.
Artículo en Inglés | MEDLINE | ID: mdl-37462822

RESUMEN

According to the latest epidemiology of the US, B-cell cancers account for > 3% of all new cancer cases and > 80% of non-Hodgkin lymphomas. However, the disease-modifying small molecular drug suitable for most B-cell cancers is still lacking. RIPK1 (receptor-interacting serine/threonine-protein kinase 1) has been observed to be dysregulated and implicated in the pathogenesis of multiple solid cancers, of which, however, the roles in blood cancers are quite unclear. In our study, to identify multi-function targets for B-cell cancer treatment, we reanalyzed a public transcriptomic dataset from the database of Gene Expression Omnibus, which includes CD19+ B-cell populations from 6 normal donors and patients of 5 CLL, 10 FL, and 8 DLBCL. After overlapping three groups (CLL vs. normal, FL vs. normal, and DLBCL vs. normal) of differentially expressed genes (DEGs), we obtained 69 common DEGs, of which 3 were validated by real-time quantitative PCR, including RIPK3, IGSF3, TGFBI. Interestingly, we found that the loss function of RIPK1 significantly increases the proliferation and viability of GM12878 cells (a normal human B lymphocyte cell line). Consistently, overexpression of RIPK1 in TMD8 and U2932 cells effectively inhibited cell proliferation and growth. More importantly, modifying RIPK1 kinase activity by a small molecule (such as necrostain-1, HOIPIN-1, etc.) alters the cell growth status of B-cell lymphoma, showing that RIPK1 exhibits anti-tumor activity in the context of B-cell lymphoma. Taken together, we consider that RIPK1 may be a potential target in the clinical application of B-cell lymphoma (including CLL, DLBCL, and FL) treatment.

12.
Int J Biol Macromol ; 245: 125511, 2023 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-37356693

RESUMEN

Large bone defects have presented a significant challenge in orthopedic treatments, and the emergence of tissue-engineered scaffolds has introduced new avenues for treatment. Nonetheless, the clinical application of such scaffolds has been hindered by drawbacks like inadequate mechanical properties, and deficient osteogenesis. Herein, a biocompatible polylactic acid (PLA) based composite was proposed to emulate cancellous bone's morphology by incorporating nano-hydroxyapatite (nHA). In addition, a quantity of Mg2+ and chitosan (CS) as active osteogenic factors were adopted to imitate the bone marrow mesenchymal components in vivo. Using a pre-evaporated solvent and sacrificial multi-template techniques, the cellular PLA-based tissue engineering scaffolds containing macropores larger than 100 µm and micropores smaller than 10 µm were developed. The scaffold's bionic structure, osteogenic active component, and multi-scale cellular make it comparable to cancellous bone, with favorable mechanical properties and hydrophilicity. Vitro tests using Sprague-Dawley (SD) rat bone marrow mesenchymal stem cells (rBMSCs) demonstrated the scaffold's excellent biocompatibility to induce high efficiency of osteogenic differentiation. The bionic porous scaffold with multi-scale cellular structure also can recruit rBMSCs, promote bone regrowth and osteogenic differentiation, and facilitate the regeneration of defective bone tissue for repair. This contribution presented a promising strategy for future advancements in bone tissue engineering.


Asunto(s)
Biónica , Osteogénesis , Ratas , Animales , Ratas Sprague-Dawley , Andamios del Tejido/química , Huesos , Poliésteres/farmacología , Poliésteres/química , Ingeniería de Tejidos/métodos , Diferenciación Celular , Regeneración Ósea
13.
Front Cell Neurosci ; 17: 1145574, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37293627

RESUMEN

Traumatic optic neuropathy (TON) is a condition that causes massive loss of retinal ganglion cells (RGCs) and their axonal fibers, leading to visual insufficiency. Several intrinsic and external factors can limit the regenerative ability of RGC after TON, subsequently resulting in RGC death. Hence, it is important to investigate a potential drug that can protect RGC after TON and enhance its regenerative capacity. Herein, we investigated whether Huperzine A (HupA), extracted from a Chinese herb, has neuroprotective effects and may enhance neuronal regeneration following the optic nerve crush (ONC) model. We compared the three modes of drug delivery and found that intravitreal injection of HupA could promote RGC survival and axonal regeneration after ONC. Mechanistically, HupA exerted its neuroprotective and axonal regenerative effects through the mTOR pathway; these effects could be blocked by rapamycin. To sum up, our findings suggest a promising application of HupA in the clinical treatment of traumatic optic nerve.

14.
Small ; 19(36): e2301378, 2023 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-37127873

RESUMEN

Flexible piezoresistive sensors with biological structures are widely exploited for high sensitivity and detection. However, the conventional bionic structure pressure sensors usually suffer from irreconcilable conflicts between high sensitivity and wide detection response range. Herein, a triple periodic minimum surface (TPMS) structure sensor is proposed based on parametric structural design and 3D printing techniques. Upon tailoring of the dedicated structural parameters, the resulting sensors exhibit superior compression durability, high sensitivity, and ultra-high detection range, that enabling it meets the needs of various scenes. As a model system, TPMS structure sensor with 40.5% porosity exhibits an ultra-high sensitivity (132 kPa-1 in 0-5.7 MPa), wide detection strain range (0-31.2%), high repeatability and durability (1000 cycles in 4.41 MPa, 10000 s in 1.32 MPa), and low detection limit (1% in 80 kPa). The stress/strain distributions have been identified using finite element analysis. Toward practical applications, the TPMS structural sensors can be applied to detect human activity and health monitoring (i.e., voice recognition, finger pressure, sitting, standing, walking, and falling down behaviors). The synergistic effects of MWCNTs and MXene conductive network also ensure the composite further being utilized for electromagnetic interference shielding applications.

15.
Adv Sci (Weinh) ; 10(18): e2300342, 2023 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-37092569

RESUMEN

Benefitting from the maximum atom utilization efficiency, special size quantum effects and tailored active sites, single-atom catalysts (SACs) have been promising candidates for bifunctional catalysts toward water splitting. Besides, due to the unique structure and properties, some amorphous materials have been found to possess better performance than their crystalline counterparts in electrocatalytic water splitting. Herein, by combining the advantages of ruthenium (Ru) single atoms and amorphous substrates, amorphous molybdenum-based oxide stabilized single-atomic-site Ru (Ru SAs-MoO3- x /NF) catalysts are conceived as a self-supported electrode. By virtue of the large surface area, enhanced intrinsic activity and fast reaction kinetics, the as-prepared Ru SAs-MoO3- x /NF electrode effectively drives both oxygen evolution reaction (209 mV @ 10 mA cm-2 ) and hydrogen evolution reaction (36 mV @ 10 mA cm-2 ) in alkaline media. Impressively, the assembled electrolyzer merely requires an ultralow cell voltage of 1.487 V to deliver the current density of 10 mA cm-2 . Furthermore, such an electrode also exhibits a great application potential in alkaline seawater electrolysis, achieving a current density of 100 mA cm-2 at a low cell voltage of 1.759 V. In addition, Ru SAs-MoO3- x /NF only has very small current density decay in the long-term constant current water splitting test.


Asunto(s)
Rutenio , Agua , Agua de Mar , Óxidos , Electrodos
16.
Nat Commun ; 14(1): 2023, 2023 Apr 11.
Artículo en Inglés | MEDLINE | ID: mdl-37041177

RESUMEN

Intertwined spin and charge orders have been widely studied in high-temperature superconductors, since their fluctuations may facilitate electron pairing; however, they are rarely identified in heavily electron-doped iron selenides. Here, using scanning tunneling microscopy, we show that when the superconductivity of (Li0.84Fe0.16OH)Fe1-xSe is suppressed by introducing Fe-site defects, a short-ranged checkerboard charge order emerges, propagating along the Fe-Fe directions with an approximately 2aFe period. It persists throughout the whole phase space tuned by Fe-site defect density, from a defect-pinned local pattern in optimally doped samples to an extended order in samples with lower Tc or non-superconducting. Intriguingly, our simulations indicate that the charge order is likely driven by multiple-Q spin density waves originating from the spin fluctuations observed by inelastic neutron scattering. Our study proves the presence of a competing order in heavily electron-doped iron selenides, and demonstrates the potential of charge order as a tool to detect spin fluctuations.

17.
Heliyon ; 9(2): e13529, 2023 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-36873162

RESUMEN

The mechanical structure topology design based on substructure always adopts the traditional substructure design method, which often comes from the experience and is limited by the inherent or stereotyped design thinking. A substructure design method based on biological unit cell (UC) is proposed, which draws inspiration from the biological efficient load-bearing topology structure. Especially, the thought of the formalized problem-solving of extension matter-element is introduced. Through the matter-element definition of UC substructure, the process model for the structure bionic topology design method based on biological UC is formed, which avoids the random or wild mental stimulation of the structure topology design method based on traditional substructure. In particular, in this proposed method, aiming at the problem about how to achieve the integration of high-efficiency load-bearing advantage of different organisms, furthermore, a biological UC hybridization method based on the principle of inventive problem solving theory (TRIZ) is proposed. The typical case is used to illustrate the process of this method in detail. The results from simulations and experiments both show that: the load-bearing capacity of structure design based on biology UC is improved than the initial design; on this basis, the load-bearing capacity of structure design is improved further through UC hybridization. All these show the feasibility and correctness of the proposed method.

18.
Cancers (Basel) ; 15(5)2023 Mar 05.
Artículo en Inglés | MEDLINE | ID: mdl-36900398

RESUMEN

BACKGROUND: CPUL1, a phenazine analog, has demonstrated potent antitumor properties against hepatocellular carcinoma (HCC) and indicates a promising prospect in pharmaceutical development. However, the underlying mechanisms remain largely obscure. METHODS: Multiple HCC cell lines were used to investigate the in vitro effects of CPUL1. The antineoplastic properties of CPUL1 were assessed in vivo by establishing a xenograft nude mice model. After that, metabolomics, transcriptomics, and bioinformatics were integrated to elucidate the mechanisms underlying the therapeutic efficacy of CPUL1, highlighting an unanticipated involvement of autophagy dysregulation. RESULTS: CPUL1 suppressed HCC cell proliferation in vitro and in vivo, thereby endorsing the potential as a leading agent for HCC therapy. Integrative omics characterized a deteriorating scenario of metabolic debilitation with CPUL1, presenting an issue in the autophagy contribution of autophagy. Subsequent observations indicated that CPUL1 treatment could impede autophagic flow by suppressing autophagosome degradation rather than its formation, which supposedly exacerbated cellular damage triggered by metabolic impairment. Moreover, the observed late autophagosome degradation may be attributed to lysosome dysfunction, which is essential for the final stage of autophagy and cargo disposal. CONCLUSIONS: Our study comprehensively profiled the anti-hepatoma characteristics and molecular mechanisms of CPUL1, highlighting the implications of progressive metabolic failure. This could partially be ascribed to autophagy blockage, which supposedly conveyed nutritional deprivation and intensified cellular vulnerability to stress.

19.
Small ; 19(23): e2207421, 2023 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-36890778

RESUMEN

The well-defined 2D or 3D structure of covalent organic frameworks (COFs) makes it have great potential in photoelectric conversion and ions conduction fields. Herein, a new donor-accepter (D-A) COF material, named PyPz-COF, constructed from electron donor 4,4',4″,4'″-(pyrene-1,3,6,8-tetrayl)tetraaniline and electron accepter 4,4'-(pyrazine-2,5-diyl)dibenzaldehyde with an ordered and stable π-conjugated structure is reported. Interestingly, the introduction of pyrazine ring endows the PyPz-COF a distinct optical, electrochemical, charge-transfer properties, and also brings plentiful CN groups that enrich the proton by hydrogen bonds to enhance the photocatalysis performance. Thus, PyPz-COF exhibits a significantly improved photocatalytic hydrogen generation performance up to 7542 µmol g-1 h-1 with Pt as cocatalyst, also in clear contrast to that of PyTp-COF without pyrazine introduction (1714 µmol g-1 h-1 ). Moreover, the abundant nitrogen sites of the pyrazine ring and the well-defined 1D nanochannels enable the as-prepared COFs to immobilize H3 PO4 proton carriers in COFs through hydrogen bond confinement. The resulting material has an impressive proton conduction up to 8.10 × 10-2 S cm-1 at 353 K, 98% RH. This work will inspire the design and synthesis of COF-based materials with both efficient photocatalysis and proton conduction performance in the future.

20.
Neuroimage Clin ; 37: 103361, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36871404

RESUMEN

OBJECTIVE: We aimed to explore the pathogenesis of traumatic coma related to functional connectivity (FC) within the default mode network (DMN), within the executive control network (ECN) and between the DMN and ECN and to investigate its capacity for predicting awakening. METHODS: We carried out resting-state functional magnetic resonance imaging (fMRI) examinations on 28 traumatic coma patients and 28 age-matched healthy controls. DMN and ECN nodes were split into regions of interest (ROIs), and node-to-node FC analysis was conducted on individual participants. To identify coma pathogenesis, we compared the pairwise FC differences between coma patients and healthy controls. Meanwhile, we divided the traumatic coma patients into different subgroups based on their clinical outcome scores at 6 months postinjury. Considering the awakening prediction, we calculated the area under the curve (AUC) to evaluate the predictive ability of changed FC pairs. RESULTS: We found a massive pairwise FC alteration in the patients with traumatic coma compared to the healthy controls [45% (33/74) pairwise FC located in the DMN, 27% (20/74) pairwise FC located in the ECN, and 28% (21/74) pairwise FC located between the DMN and ECN]. Moreover, in the awake and coma groups, there were 67% (12/18) pairwise FC alterations located in the DMN and 33% (6/18) pairwise FC alterations located between the DMN and ECN. We also indicated that pairwise FC that showed a predictive value of 6-month awakening was mainly located in the DMN rather than in the ECN. Specifically, decreased FC between the right superior frontal gyrus and right parahippocampal gyrus (in the DMN) showed the highest predictive ability (AUC = 0.827). CONCLUSION: In the acute phase of severe traumatic brain injury (sTBI), the DMN plays a more prominent role than the ECN and the DMN-ECN interaction in the emergence of traumatic coma and the prediction of 6-month awakening.


Asunto(s)
Lesiones Traumáticas del Encéfalo , Coma Postraumatismo Craneoencefálico , Humanos , Coma/diagnóstico por imagen , Coma/etiología , Función Ejecutiva , Red en Modo Predeterminado , Imagen por Resonancia Magnética/métodos , Encéfalo/diagnóstico por imagen , Mapeo Encefálico/métodos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...