Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Sensors (Basel) ; 24(15)2024 Jul 26.
Artículo en Inglés | MEDLINE | ID: mdl-39123915

RESUMEN

The Heihe River Basin (HRB), located on the northeast margin of the Qilian Mountains, is China's second largest inland river basin. It is a typical oasis-type agricultural area in northwest China's arid and semiarid areas. It is important to monitor and investigate the spatiotemporal distribution characteristics and mechanisms of surface deformation in HRB for the ecology of inland river basins. In recent years, research on HRB has mainly focused on hydrology, meteorology, geology, or biology. Few studies have conducted wide-area monitoring and mechanism analysis of the surface stability of HRB. In this study, an improved interferometric point target analysis InSAR (IPTA-InSAR) technique is used to process 101 Sentinel-1 SAR images from two adjacent track frames covering the HRB from 2019 to 2020. The wide-area deformation of the HRB is obtained first for this period. The results show that most of the surface around the HRB is relatively stable. There are six areas with an extensive deformation range and magnitude in the plain oasis area. The maximum deformation rate is more than 50 mm/year. The maximum seasonal subsidence and uplift along the satellites' line-of-sight (LOS) direction can be up to -70 mm and 60 mm, respectively. Moreover, we use the Google Earth Engine platform to process the multisource optical images and analyze the deformation areas. The remote sensing indicators of the deformation areas, such as the normalized difference vegetation index (NDVI), soil moisture (SMMI), and precipitation, are obtained during the InSAR monitoring period. We combine these integrated remote sensing results with soil type and precipitation to analyze the surface deformations of the HRB. The spatiotemporal relationships between soil moisture, vegetation cover, and surface deformation of the HRB are revealed. The results will provide data support and reference for the healthy and sustainable development of the inland river basin economic zone.

2.
Sensors (Basel) ; 24(15)2024 Jul 26.
Artículo en Inglés | MEDLINE | ID: mdl-39123918

RESUMEN

The realization of a harmonious relationship between the natural environment and economic development has always been the unremitting pursuit of traditional mineral resource-based cities. With rich reserves of iron and coal ore resources, Laiwu has become an important steel production base in Shandong Province in China, after several decades of industrial development. However, some serious environmental problems have occurred with the quick development of local steel industries, with ground subsidence and consequent secondary disasters as the most representative ones. To better evaluate possible ground collapse risk, comprehensive approaches incorporating the common deformation monitoring with small-baseline subset (SBAS)-synthetic aperture radar interferometry (InSAR) technique, environmental factors analysis, and risk evaluation are designed here with ALOS PALSAR and Sentinel-1 SAR observations. A retrospect on the ground deformation process indicates that ground deformation has largely decreased by around 51.57% in area but increased on average by around -5.4 mm/year in magnitude over the observation period of Sentinel-1 (30 July 2015 to 22 August 2022), compared to that of ALOS PALSAR (17 January 2007 to 28 October 2010). To better reveal the potential triggering mechanism, environmental factors are also utilized and conjointly analyzed with the ground deformation time series. These analysis results indicate that the ground deformation signals are highly correlated with human industrial activities, such underground mining, and the operation of manual infrastructures (landfill, tailing pond, and so on). In addition, the evaluation demonstrates that the area with potential collapse risk (levels of medium, high, and extremely high) occupies around 8.19 km2, approximately 0.86% of the whole study region. This study sheds a bright light on the safety guarantee for the industrial operation and the ecologically friendly urban development of traditional steel production industrial cities in China.

3.
Sensors (Basel) ; 24(16)2024 Aug 22.
Artículo en Inglés | MEDLINE | ID: mdl-39205145

RESUMEN

Guangdong Province, home to 21 cities and a permanent population of 127.06 million people, boasts the largest provincial economy in China, contributing 11.76% to the national GDP in 2023. However, it is prone to geological hazards due to its geological conditions, extreme weather, and extensive human activities. Geohazards not only endanger lives but also hinder regional economic development. Monitoring surface deformation regularly can promptly detect geological hazards and allow for effective mitigation strategies. Traditional ground subsidence monitoring methods are insufficient for comprehensive surveys and rapid monitoring of geological hazards in the whole province. Interferometric Synthetic Aperture Radar (InSAR) technology using satellite images can achieve wide-area geohazard monitoring. However, current geological hazard monitoring in Guangdong Province based on InSAR technology lacks regional analysis and statistics of surface deformation across the entire province. Furthermore, such monitoring fails to analyze the spatial-temporal characteristics of surface deformation and disaster evolution mechanisms by considering the local geological features. To address these issues, current work utilizes Sentinel-1A/B satellite data covering Guangdong Province from 2015 to 2022 to obtain the wide-area surface deformation in the whole province using the multi-temporal (MT) InSAR technology. Based on the deformation results, a wide-area deformation region automatic identification method is used to identify the surface deformation regions and count the deformation area in each city of Guangdong Province. By analyzing the results, we obtained the following findings: (1) Using the automatic identification algorithm we identified 2394 deformation regions. (2) Surface subsidence is concentrated in the delta regions and reclamation areas; over a 4 cm/year subsidence rate is observed in the hilly regions of northern Guangdong, particularly in mining areas. (3) Surface deformation is closely related to geological structures and human activities. (4) Sentinel-1 satellite C-band imagery is highly effective for wide-area geological hazard monitoring, but has limitations in monitoring small-area geological hazards. In the future, combining the high-spatial-temporal-resolution L-band imagery from the NISAR satellite with Sentinel-1 imagery will allow for comprehensive monitoring and early warning of geological hazards, achieving multiple geometric and platform perspectives for geological hazard monitoring and management in Guangdong Province. The findings of this study have significant reference value for the monitoring and management of geological disasters in Guangdong Province.

4.
Sensors (Basel) ; 24(14)2024 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-39065981

RESUMEN

The joint action of human activities and environmental changes contributes to the frequent occurrence of landslide, causing major hazards. Using Interferometric Synthetic Aperture Radar (InSAR) technique enables the detailed detection of surface deformation, facilitating early landslide detection. The growing availability of SAR data and the development of artificial intelligence have spurred the integration of deep learning methods with InSAR for intelligent geological identification. However, existing studies using deep learning methods to detect landslides in InSAR deformation often rely on single InSAR data, which leads to the presence of other types of geological hazards in the identification results and limits the accuracy of landslide identification. Landslides are affected by many factors, especially topographic features. To enhance the accuracy of landslide identification, this study improves the existing geological hazard detection model and proposes a multi-source data fusion network termed MSFD-Net. MSFD-Net employs a pseudo-Siamese network without weight sharing, enabling the extraction of texture features from the wrapped deformation data and topographic features from topographic data, which are then fused in higher-level feature layers. We conducted comparative experiments on different networks and ablation experiments, and the results show that the proposed method achieved the best performance. We applied our method to the middle and upper reaches of the Yellow River in eastern Qinghai Province, China, and obtained deformation rates using Sentinel-1 SAR data from 2018 to 2020 in the region, ultimately identifying 254 landslides. Quantitative evaluations reveal that most detected landslides in the study area occurred at an elevation of 2500-3700 m with slope angles of 10-30°. The proposed landslide detection algorithm holds significant promise for quickly and accurately detecting wide-area landslides, facilitating timely preventive and control measures.

5.
Sensors (Basel) ; 24(14)2024 Jul 21.
Artículo en Inglés | MEDLINE | ID: mdl-39066123

RESUMEN

The optical image sub-pixel correlation (SPC) technique is an important method for monitoring large-scale surface deformation. RapidEye images, distinguished by their short revisit period and high spatial resolution, are crucial data sources for monitoring surface deformation. However, few studies have comprehensively analyzed the error sources and correction methods of the deformation field obtained from RapidEye images. We used RapidEye images without surface deformation to analyze potential errors in the offset fields. We found that the errors in RapidEye offset fields primarily consist of decorrelation noise, orbit error, and attitude jitter distortions. To mitigate decorrelation noise, the careful selection of offset pairs coupled with spatial filtering is essential. Orbit error can be effectively mitigated by the polynomial fitting method. To address attitude jitter distortions, we introduced a linear fitting approach that incorporated the coherence of attitude jitter. To demonstrate the performance of the proposed methods, we utilized RapidEye images to extract the coseismic displacement field of the 2019 Ridgecrest earthquake sequence. The two-dimensional (2D) offset field contained deformation signals extracted from two earthquakes, with a maximum offset of 2.8 m in the E-W direction and 2.4 m in the N-S direction. A comparison with GNSS observations indicates that, after error correction, the mean relative precision of the offset field improved by 92% in the E-W direction and by 89% in the N-S direction. This robust enhancement underscores the effectiveness of the proposed error correction methods for RapidEye data. This study sheds light on large-scale surface deformation monitoring using RapidEye images.

6.
Sensors (Basel) ; 23(14)2023 Jul 12.
Artículo en Inglés | MEDLINE | ID: mdl-37514636

RESUMEN

On February 6, 2023 (local time), two earthquakes (Mw7.8 and Mw7.7) struck central and southern Turkey, causing extensive damage to several cities and claiming a toll of 40,000 lives. In this study, we propose a method for seismic building damage assessment and analysis by combining SAR amplitude and phase coherence change detection. We determined building damage in five severely impacted urban areas and calculated the damage ratio by measuring the urban area and the damaged area. The largest damage ratio of 18.93% is observed in Nurdagi, and the smallest ratio of 7.59% is found in Islahiye. We verified the results by comparing them with high-resolution optical images and AI recognition results from the Microsoft team. We also used pixel offset tracking (POT) technology and D-InSAR technology to obtain surface deformation using Sentinel-1A images and analyzed the relationship between surface deformation and post-earthquake urban building damage. The results show that Nurdagi has the largest urban average surface deformation of 0.48 m and Antakya has the smallest deformation of 0.09 m. We found that buildings in the areas with steeper slopes or closer to earthquake faults have higher risk of collapse. We also discussed the influence of SAR image parameters on building change recognition. Image resolution and observation geometry have a great influence on the change detection results, and the resolution can be improved by various means to raise the recognition accuracy. Our research findings can guide earthquake disaster assessment and analysis and identify influential factors of earthquake damage.

7.
Sensors (Basel) ; 19(6)2019 Mar 19.
Artículo en Inglés | MEDLINE | ID: mdl-30893773

RESUMEN

In the context of global warming, the air temperature of the Heihe basin in Northeast China has increased significantly, resulting in the degradation of the island permafrost. In this paper, we used an elaborated time-series Interferometric Synthetic Aperture Radar (InSAR) strategy to monitor the ground deformation in the Heihe area (Heilongjiang Province, China) and then analyzed the permafrost deformation characteristics from June 2007 to December 2010. The results showed that the region presented island permafrost surface deformation, and the deformation rate along the line of sight mainly varied from ⁻70 to 70 mm/a. Based on the analysis of remote sensing and topological measurements, we found that the deformation area generally occurred at lower altitudes and on shady slopes, which is consistent with the distribution characteristics of permafrost islands. Additionally, the deformation of permafrost is highly correlated with the increase of annual minimum temperature, with an average correlation value of ⁻0.80. The accelerated degradation of permafrost in the study area led to the settlement, threatening the infrastructure safety. Our results reveal accelerated degradation characteristics for the island permafrost under the background of rising air temperature, and provide a reference for future relevant research.

8.
Sci Rep ; 5: 15542, 2015 Oct 20.
Artículo en Inglés | MEDLINE | ID: mdl-26480892

RESUMEN

This paper presents a novel method to estimate active layer thickness (ALT) over permafrost based on InSAR (Interferometric Synthetic Aperture Radar) observation and the heat transfer model of soils. The time lags between the periodic feature of InSAR-observed surface deformation over permafrost and the meteorologically recorded temperatures are assumed to be the time intervals that the temperature maximum to diffuse from the ground surface downward to the bottom of the active layer. By exploiting the time lags and the one-dimensional heat transfer model of soils, we estimate the ALTs. Using the frozen soil region in southern Qinghai-Tibet Plateau (QTP) as examples, we provided a conceptual demonstration of the estimation of the InSAR pixel-wise ALTs. In the case study, the ALTs are ranging from 1.02 to 3.14 m and with an average of 1.95 m. The results are compatible with those sparse ALT observations/estimations by traditional methods, while with extraordinary high spatial resolution at pixel level (~40 meter). The presented method is simple, and can potentially be used for deriving high-resolution ALTs in other remote areas similar to QTP, where only sparse observations are available now.

9.
Sensors (Basel) ; 8(9): 5426-5448, 2008 Sep 03.
Artículo en Inglés | MEDLINE | ID: mdl-27873822

RESUMEN

Interferometric Synthetic Aperture Radar (InSAR) is a powerful technology for observing the Earth surface, especially for mapping the Earth's topography and deformations. InSAR measurements are however often significantly affected by the atmosphere as the radar signals propagate through the atmosphere whose state varies both in space and in time. Great efforts have been made in recent years to better understand the properties of the atmospheric effects and to develop methods for mitigating the effects. This paper provides a systematic review of the work carried out in this area. The basic principles of atmospheric effects on repeat-pass InSAR are first introduced. The studies on the properties of the atmospheric effects, including the magnitudes of the effects determined in the various parts of the world, the spectra of the atmospheric effects, the isotropic properties and the statistical distributions of the effects, are then discussed. The various methods developed for mitigating the atmospheric effects are then reviewed, including the methods that are based on PSInSAR processing, the methods that are based on interferogram modeling, and those that are based on external data such as GPS observations, ground meteorological data, and satellite data including those from the MODIS and MERIS. Two examples that use MODIS and MERIS data respectively to calibrate atmospheric effects on InSAR are also given.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...