Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
J Vis Exp ; (208)2024 Jun 07.
Artículo en Inglés | MEDLINE | ID: mdl-38912815

RESUMEN

Microspheres are micrometer-sized particles that can load and gradually release drugs via physical encapsulation or adsorption onto the surface and within polymers. In the field of biomedicine, hydrogel microspheres have been extensively studied for their application as drug carriers owing to their ability to reduce the frequency of drug administration, minimize side effects, and improve patient compliance. Sodium alginate (ALG) is a naturally occurring linear polysaccharide with three backbone glycosidic linkages. There are two auxiliary hydroxyl groups present in each of the moieties of the polymer, which have the characteristics of an alcohol hydroxyl moiety. The synthetic ALG units can undergo chemical cross-linking reactions with metal ions, forming a cross-linked network structure of polymer stacks, ultimately forming a hydrogel. Hydrogel microspheres can be prepared using a simple process involving the ionic cross-linking properties of ALG. In this study, we prepared ALG-based hydrogel microspheres (ALGMS) using a microfluidic electrodeposition strategy. The prepared hydrogel microspheres were uniformly sized and well-dispersed, owing to accurate control of the microfluidic electrospray flow. ALGMS cross-linked with different metal ions were prepared using a microfluidic electrospray technique combining microfluidic and high electric field, and its antimicrobial properties, slow drug release ability, and biocompatibility were investigated. This technology holds promise for application in advanced drug development and production.


Asunto(s)
Alginatos , Microesferas , Alginatos/química , Reactivos de Enlaces Cruzados/química , Hidrogeles/química , Técnicas Analíticas Microfluídicas/métodos , Técnicas Analíticas Microfluídicas/instrumentación , Ácido Glucurónico/química , Ácidos Hexurónicos/química , Portadores de Fármacos/química
2.
J Nanobiotechnology ; 22(1): 182, 2024 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-38622684

RESUMEN

Hydrogels are a class of highly absorbent and easily modified polymer materials suitable for use as slow-release carriers for drugs. Gene therapy is highly specific and can overcome the limitations of traditional tissue engineering techniques and has significant advantages in tissue repair. However, therapeutic genes are often affected by cellular barriers and enzyme sensitivity, and carrier loading of therapeutic genes is essential. Therapeutic gene hydrogels can well overcome these difficulties. Moreover, gene-therapeutic hydrogels have made considerable progress. This review summarizes the recent research on carrier gene hydrogels for the treatment of tissue damage through a summary of the most current research frontiers. We initially introduce the classification of hydrogels and their cross-linking methods, followed by a detailed overview of the types and modifications of therapeutic genes, a detailed discussion on the loading of therapeutic genes in hydrogels and their characterization features, a summary of the design of hydrogels for therapeutic gene release, and an overview of their applications in tissue engineering. Finally, we provide comments and look forward to the shortcomings and future directions of hydrogels for gene therapy. We hope that this article will provide researchers in related fields with more comprehensive and systematic strategies for tissue engineering repair and further promote the development of the field of hydrogels for gene therapy.


Asunto(s)
Hidrogeles , Ingeniería de Tejidos , Ingeniería de Tejidos/métodos , Terapia Genética , Polímeros
3.
Sci Total Environ ; 924: 171573, 2024 May 10.
Artículo en Inglés | MEDLINE | ID: mdl-38462005

RESUMEN

The critical impacts of microclimate on carbon (C) cycling have been widely reported. However, the potential effects of global change on wetland microclimate remain unclear, primarily because of the absence of field manipulative experiment in inundated wetland. This study was designed to examine the effects of nighttime warming and nitrogen (N) addition on air, water, and sediment temperature and also reveal the controlling factors in a Phragmites australis dominated freshwater wetland on the North China Plain. Nighttime warming increased daily air, water, and sediment temperature by 0.24 °C, 0.27 °C, and 0.36 °C, respectively. The diurnal temperature range of water was decreased by 0.44 °C under nighttime warming, whereas warming had no effect on diurnal temperature range of air and sediment. In addition, N addition caused a reduction of 0.20 °C and 0.14 °C in daily water and sediment temperature by increasing vegetation coverage. There was a significant interaction between nighttime warming and N addition on water temperature. Furthermore, the vapor pressure deficit is the main factor affecting the extent of the warming-induced increases in air temperature. The changes of height and leaf area index of Phragmites australis are responsible for the cooling effects in the N addition plots. This study provides empirical evidence for the positive climate warming - microclimate feedback in freshwater wetland. However, N deposition leads to decreased water and sediment temperature. Our findings highlight the importance of incorporating the differential impacts of nighttime warming and N addition on air, water, and sediment temperature into the predictions of wetland C cycling responses to climate change.

4.
Sci Total Environ ; 921: 171170, 2024 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-38402979

RESUMEN

Concurrent changing precipitation regimes and atmospheric nitrogen (N) deposition can have profound influences on soil carbon (C) cycling. However, how N enrichment regulates the responses of soil C fluxes to increasing variability of precipitation remains elusive. As part of a field precipitation gradient experiment with nine levels of precipitation amounts (-60 %, -45 %, -30 %, -15 %, ambient precipitation, +15 %, +30 %, +45 %, and +60 %) and two levels of N addition (0 and 10 g N m-2 yr-1) in a semi-arid temperate steppe on the Mongolian Plateau, this work was conducted to investigate the responses of soil respiration to decreased and increased precipitation (DP and IP), N addition, and their possible interactions. Averaged over the three years from 2019 to 2021, DP suppressed soil respiration by 16.1 %, whereas IP stimulated it by 27.4 %. Nitrogen addition decreased soil respiration by 7.1 % primarily via reducing microbial biomass C. Soil respiration showed symmetric responses to DP and IP within all the four precipitation variabilities (i.e., 15 %, 30 %, 45 %, and 60 %) under ambient N. Nevertheless, N addition did not alter the symmetric responses of soil respiration to changing precipitation due to the comparable sensitivities of microbial biomass and root growth to DP and IP under the N addition treatment. These findings indicate that intensified precipitation variability does not change but N addition could alleviate soil C releases. The unchanged symmetric responses of soil respiration to precipitation variability under N addition imply that N deposition may not change the response pattern of soil C releases to predicted increases in precipitation variability in grasslands, facilitating the robust projections of ecosystem C cycling under future global change scenarios.


Asunto(s)
Ecosistema , Pradera , Nitrógeno/análisis , Suelo , Microbiología del Suelo , Carbono
5.
Int J Biol Sci ; 19(13): 4004-4019, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37705751

RESUMEN

Silicosis is a common and ultimately fatal occupational disease, yet the limited therapeutic option remains the major clinical challenge. Apelin, an endogenous ligand of the G-protein-coupled receptor (APJ), is abundantly expressed in diverse organs. The apelin-APJ axis helps to control pathological and physiological processes in lung. The role of apelin in the pathological process and its possible therapeutic effects on silicosis have not been elucidated. In this study, we found that lung expression and circulating levels of apelin were markedly decreased in silicosis patients and silica-induced fibrotic mice and associated with the severity. Furthermore, in vivo data demonstrated that pre-treatment from day 3 and post-treatment from day 15 with apelin could both alleviate silica-induced pulmonary fibrosis in mice. Besides, apelin inhibited pulmonary fibroblast activation via transforming growth factor beta 1 (TGF-ß1) signaling. Our study suggested that apelin could prevent and reverse silica-induced pulmonary fibrosis by inhibiting the fibroblast activation through TGF-ß1 signaling pathway, thus providing a new potential therapeutic strategy for silicosis and other pulmonary fibrosis.


Asunto(s)
Fibrosis Pulmonar , Silicosis , Animales , Ratones , Apelina , Fibroblastos , Fibrosis Pulmonar/inducido químicamente , Fibrosis Pulmonar/tratamiento farmacológico , Dióxido de Silicio/toxicidad , Silicosis/tratamiento farmacológico , Factor de Crecimiento Transformador beta1
6.
Regen Biomater ; 10: rbad036, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37153848

RESUMEN

One of the main illnesses that put people's health in jeopardy is myocardial infarction (MI). After MI, damaged or dead cells set off an initial inflammatory response that thins the ventricle wall and degrades the extracellular matrix. At the same time, the ischemia and hypoxic conditions resulting from MI lead to significant capillary obstruction and rupture, impairing cardiac function and reducing blood flow to the heart. Therefore, attenuating the initial inflammatory response and promoting angiogenesis are very important for the treatment of MI. Here, to reduce inflammation and promote angiogenesis in infarcted area, we report a new kind of injectable hydrogel composed of puerarin and chitosan via in situ self-assembly with simultaneous delivery of mesoporous silica nanoparticles (CHP@Si) for myocardial repair. On the one hand, puerarin degraded from CHP@Si hydrogel modulated the inflammatory response via inhibiting M1-type polarization of macrophages and expression of pro-inflammatory factors. On the other hand, silica ions and puerarin released from CHP@Si hydrogel showed synergistic activity to improve the cell viability, migration and angiogenic gene expression of HUVECs in both conventional and oxygen/glucose-deprived environments. It suggests that this multifunctional injectable CHP@Si hydrogel with good biocompatibility may be an appropriate candidate as a bioactive material for myocardial repair post-MI.

7.
Biology (Basel) ; 12(5)2023 May 10.
Artículo en Inglés | MEDLINE | ID: mdl-37237512

RESUMEN

Climate warming has profoundly influenced community structure and ecosystem functions in the terrestrial biosphere. However, how asymmetric rising temperatures between daytime and nighttime affect soil microbial communities that predominantly regulate soil carbon (C) release remains unclear. As part of a decade-long warming manipulation experiment in a semi-arid grassland, we aimed to examine the effects of short- and long-term asymmetrically diurnal warming on soil microbial composition. Neither daytime nor nighttime warming affected soil microbial composition in the short term, whereas long-term daytime warming instead of nighttime warming decreased fungal abundance by 6.28% (p < 0.05) and the ratio of fungi to bacteria by 6.76% (p < 0.01), which could be caused by the elevated soil temperature, reduced soil moisture, and increased grass cover. In addition, soil respiration enhanced with the decreasing fungi-to-bacteria ratio, but was not correlated with microbial biomass C during the 10 years, indicating that microbial composition may be more important than biomass in modulating soil respiration. These observations highlight the crucial role of soil microbial composition in regulating grassland C release under long-term climate warming, which facilitates an accurate assessment of climate-C feedback in the terrestrial biosphere.

8.
J Biotechnol ; 344: 50-56, 2022 Jan 20.
Artículo en Inglés | MEDLINE | ID: mdl-34973970

RESUMEN

Bioflocculant may be a promising bioactivator for heavy metal removal duo to its eco-friendly properties and remarkable ability to adsorb heavy metals. In this study, bioflocculant production from a bacterium, Pseudomonas sp. GO2, was optimized and its removal efficiency for two heavy metal ions was evaluated. Results demonstrated that the maximal flocculation efficiency was achieved with concentration levels of 5 g/L glucose, 3 g/L casein, and 5 g/L NaCl, with an initial pH of 9.0, and a fermentation time of 48 h. Bioflocculant produced by GO2 had a stronger removal efficiency for Cd2+ than that of Pb2+, with highest removal efficiencies of 85.38% and 80.87%, respectively. The adsorption process was mainly dependent on the monolayer and chemisorption based on the adsorption isotherm and kinetic models. This study demonstrated that bioflocculant produced by the GO2 strain has the potential to be used in heavy metal treatment from industrial wastewater.


Asunto(s)
Metales Pesados , Pseudomonas , Adsorción , Floculación , Concentración de Iones de Hidrógeno , Aguas Residuales
9.
Sci Total Environ ; 732: 139170, 2020 Aug 25.
Artículo en Inglés | MEDLINE | ID: mdl-32438166

RESUMEN

Microorganisms colonize plant-associated environments and constitute complex communities aided in key functions for nutrient acquisition, disease suppression and abiotic stress resistance. In this study, we evaluated the variation of root-associated microbiomes of two typical farmland crops, maize (Zea mays L.) and soybean (Glycine max L. Merr.) respond to organochlorine pesticide stress, taking lindane as an example. Results showed that there were promoted but different attenuation rates of residual lindane in rhizosphere soils during maize and soybean growth, and the differential is due to the comprehensive effects of plant characters and microbial activities. Organochlorine pollution did not have significant impact on the microbial diversity and populations in all rhizo-compartments, but mostly stimulated the microbial connectivity. The multistep and decreasing processes for root-associated microbiomes of both maize and soybean were spatially different and mainly dependent on the shaping roles of host plants. These results expand our understandings of the organochlorine influence on the underground ecological system in crop-dependent soils.


Asunto(s)
Glycine max , Microbiota , Zea mays , Hexaclorociclohexano , Raíces de Plantas , Suelo , Microbiología del Suelo
10.
Environ Pollut ; 257: 113580, 2020 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-31753626

RESUMEN

Plant-specific root-microbe-soil interactions play an indisputable role in microbial adaptation to environmental stresses. However, the assembly of plant rhizosphere microbiomes and their feedbacks in modification of pollution alleviation under organochlorine stress condition is far less clear. This study examined the response of root-associated bacterial microbiomes to lindane pollution and compared the dissipation of lindane in maize-cultivated dry soils and rice-cultivated flooded soils. Results showed that lindane pollution dramatically altered the microbial structure in the rhizosphere soil of maize but had less influence on the microbial composition in flooded treatments regardless of rice growth, when the reductive dechlorination of lindane was actively coupled with natural redox processes under anaerobic conditions. After 30 days of plant growth, lindane residues dissipated much faster in anaerobic than in aerobic environments, with only 1.08 mg kg-1 lindane remaining in flooded control compared to 12.79 mg kg-1 in dry control soils. Compared to the corresponding unplanted control, maize growth significantly increased, but rice growth slightly decreased the dissipation of lindane. Our study suggests that opposite impacts would lead to the self-purification of polluted soils during the growth of xerophytic maize and hygrocolous rice. This was attributed to the contrasting belowground micro-ecological processes regarding protection of root tissues and thereby assembly of rhizosphere microbiomes shaped by the xerophytic and hygrocolous crops under different water managements, in response to lindane pollution.


Asunto(s)
Hexaclorociclohexano/análisis , Oryza , Microbiología del Suelo , Contaminantes del Suelo/análisis , Suelo , Raíces de Plantas , Rizosfera
11.
J Hazard Mater ; 384: 121503, 2020 02 15.
Artículo en Inglés | MEDLINE | ID: mdl-31708286

RESUMEN

Organochlorines are critical soil contaminants and the use of biochar has recently shown potential to improve soil remediation. However, little is known about biochar-microbe interactions nor the impact on environmental processes such as the immobilization and biodegradation of organochlorine compounds. In this study, we performed microcosm experiments to elucidate how biochar affected the biodegradation and sequestration of pentachlorophenol (PCP). Our results showed that the amendment of biochar markedly inhibited PCP biodegradation due to a strong sorption affinity for PCP under both aerobic and anaerobic conditions. Notably, the inhibitory effect was relatively weaker under anaerobic conditions than under aerobic conditions. The addition of biochar can dramatically shift the bacterial community diversity in the PCP-spiked soils. Under aerobic conditions, biochar significantly stimulated the growth of PCP-degrading bacteria Bacillus and Sphingomonas, but reduced the opportunities for microbes to contact with PCP directly. Under anaerobic conditions, the non-strict organohalide-respiring bacteria Desulfovibrio, Anaeromyxobacter, Geobacter and Desulfomonile were the main drivers of PCP transformation. Our results imply that the use of biochar as a soil remediation strategy for organochlorine compounds should be cautious.


Asunto(s)
Carbón Orgánico , Microbiota , Pentaclorofenol/metabolismo , Contaminantes del Suelo/metabolismo , Aerobiosis , Anaerobiosis , Biodegradación Ambiental , Oryza
12.
Environ Int ; 131: 104975, 2019 10.
Artículo en Inglés | MEDLINE | ID: mdl-31284116

RESUMEN

Organochlorine pesticides have been extensively used for many years to prevent insect diseases of rice (Oryza sativa L.), but little is known about their residual impacts on the underground micro-ecology in anaerobic environment. In this glasshouse study, we characterized the lindane effects on the assembly of root-associated microbiomes of commonly used indica, japonica and hybrid rice cultivars, and their feedback in turn, in modifying lindane anaerobic dissipation during 60 days' rice production. The results showed that rice growth inhibited the anaerobic dissipation of lindane, but was not affected apparently by lindane at initial spiked concentration of 4.62 and 18.54 mg kg-1 soil. Suppressed removal of lindane in rice planted treatments as compared with that in unplanted control was likely due to inhibited reductive dechlorination induced by a comprehensive effect of radial O2 secretion of rice root and co-occurring Fe(III) reduction that consumed electron competitively in rice rhizosphere. However, the hybrid cultivar exhibited a less suppression than the conventional cultivars in high polluted soils. Bacteria was more sensitively responded to lindane pollution than fungal taxa, and Actinobacteria, Chloroflexi, Verrucomicrobia and Proteobacteria were the main different phyla between hybrid and conventional cultivars, with a more stable community structure exhibited in the hybrid rice under lindane stress. Our study highlights the assembly and variation of root-associated microbiomes in responses of lindane pollution, and suggests that hybrid rice cultivar might be most competent for cultivation in paddy fields polluted by lindane and other organochlorine pesticides, especially in the area with high residual levels.


Asunto(s)
Hexaclorociclohexano/farmacología , Insecticidas/farmacología , Microbiota/efectos de los fármacos , Oryza/efectos de los fármacos , Oryza/microbiología , Raíces de Plantas/microbiología , Contaminantes del Suelo/farmacología , Bacterias/efectos de los fármacos , Hongos/efectos de los fármacos , Oryza/química , Raíces de Plantas/química , Raíces de Plantas/efectos de los fármacos , Rizosfera , Suelo/química , Contaminantes del Suelo/análisis
13.
Environ Int ; 129: 451-460, 2019 08.
Artículo en Inglés | MEDLINE | ID: mdl-31154147

RESUMEN

Nitrification and denitrification are two important processes in the nitrogen (N) cycle. Under heavy-metal pollution with water management of paddy soils, these two processes are not well understood. This study aimed to examine the effect of cadmium (Cd) on N transformation under flooding and non-flooding conditions. A paddy soil was incubated under two water regimes (flooding and non-flooding) and four Cd levels (0, 2, 5 and 10 mg kg-1). The availability of Cd was higher in the non-flooding than flooding conditions. Cadmium contamination significantly (p ≤ 0.05) decreased the copy number of archaeal and bacterial amoA genes, bacterial nirS, nirK and nosZ genes under both conditions with the decrease being greater under non-flooding. High level of Cd (10 mg kg-1) was more toxic in non-flooding than flooding conditions to the nitrifiers and denitrifiers, which in turn decreased N transformation through microbially-mediated processes. Its contamination decreased N2O emission initially under both water regimes but the effect was greater under the non-flooding condition. However, the non-significant stimulatory effect of Cd on N2O emission was observed during the late phase. The microbial community structure was changed with time and water regimes. Irrespective of water regime, the dominated fungal phyla were Ascomycota and Basidiomycota while the dominated bacteria phyla were Actinobacteria, Proteobacteria, Firmicutes and Acidobacteria. In summary, water regimes and Cd bioavailability changed soil N transformations via microbial mediated processes.


Asunto(s)
Bacterias/efectos de los fármacos , Cadmio/toxicidad , Nitrógeno/metabolismo , Contaminantes del Suelo/toxicidad , Suelo/química , Agua , Bacterias/genética , Cadmio/química , Desnitrificación , Metales Pesados/química , Metales Pesados/toxicidad , Oryza , Microbiología del Suelo , Contaminantes del Suelo/química
14.
J Hazard Mater ; 374: 258-266, 2019 07 15.
Artículo en Inglés | MEDLINE | ID: mdl-31005708

RESUMEN

Methanogenesis is commonly mass-produced under anaerobic conditions and serves as a major terminal electron accepting process driving the degradation of organic biomass. In this study, a cofactor of methanogenesis (coenzyme M, CoM) and a classic methanogensis inhibitor (2-bromoethanesulfonate, BES) were added at different concentrations to investigate how methanogenesis would affect PCP degradation in flooded soil. Strikingly, the processes of methanogenesis and PCP degradation were simultaneously promoted with CoM, or inhibited with BES, significantly (p < 0.05). High-throughput sequencing for soil bacterial and archaeal community structures revealed that members of Desulfitobacterium, Dethiobacter, Sedimentibacter, Bacillus and Methanosarcina might act as the core functional groups jointly perform PCP degradation in flooded soil, possibly through assisting microbial mediated dechlorination in direct organohalide-respiration, and/or indirect co-metabolization in complex anaerobic soil conditions. This study implied an underlying synergistic coupling between methanogenesis and dechlorination, and provided insights into a novel consideration with respect to coordinating methanogenesis while promoting anaerobic degradation of PCP for complex polluted soil environment, which is necessary for the improved all-win remediation.


Asunto(s)
Anaerobiosis , Biodegradación Ambiental , Cloro/análisis , Metano/química , Pentaclorofenol/análisis , Contaminantes del Suelo/análisis , Suelo/química , Ácidos Alcanesulfónicos/metabolismo , Archaea/metabolismo , Bacillus , Clostridiales , Desulfitobacterium , Firmicutes , Inundaciones , Concentración de Iones de Hidrógeno , Mesna/metabolismo , Methanosarcina , Microbiología del Suelo , Factores de Tiempo
15.
Environ Pollut ; 244: 792-800, 2019 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-30390452

RESUMEN

An anaerobic incubation was launched with varying nitrate (1, 5, 10 and 20 mM exogenous NaNO3) and molybdate (20 mM Na2MoO4, a sulfate-reducing inhibitor) additions to investigate the characteristics of PCP dechlorination, as well as the reduction of natural co-occurring electron acceptors, including NO3-, Fe(III) and SO42-, and the responses of microbial community structures under a unique reductive mangrove soil. Regardless of exogenous addition, nitrate was rapidly eliminated in the first 12 days. The reduction process of Fe(III) was inhibited, while that of SO42- reduction depended on addition concentration as compared to the control. PCP was mainly degraded from orth-position, forming the only intermediate 2,3,4,5-TeCP by anaerobic microbes, with the highest PCP removal rate of average 21.9% achieved in 1 and 5 mM NaNO3 as well as 20 mM Na2MoO4 treatments and the lowest of 7.5% in 20 mM NaNO3 treatment. The effects of nitrate on PCP dechlorination depended on addition concentration, while molybdate promoted PCP attenuation significantly. Analyses of the Illumina sequencing data and the relative abundance of dominant microorganisms indicated that the core functional groups regulated PCP removal at genera level likely included Bacillus, Pesudomonas, Dethiobacter, Desulfoporosinus and Desulfovbrio in the nitrate treatments; while that was likely Sedimentibacter and Geosporobacter_Thermotalea in the molybdate treatment. Nitrate supplement but not over supplement, or addition of molybdate are suggested as alternative strategies for better remediation in the nitrate-deficient and sulfur-accumulated soil ecosystem contaminated by PCP, through regulating the growth of core functional groups and thereby coordinating the interaction between dechlorination and its coupled soil redox processes due to shifts of more available electrons to dechlorination. Our results broadened the knowledge regarding microbial PCP degradation and their interactions with natural soil redox processes under anaerobic soil ecosystems.


Asunto(s)
Bacterias/metabolismo , Biodegradación Ambiental , Pentaclorofenol/análisis , Pentaclorofenol/metabolismo , Contaminantes del Suelo/análisis , Contaminantes del Suelo/metabolismo , Anaerobiosis , Compuestos Férricos/química , Inundaciones , Halogenación , Molibdeno/química , Nitratos/química , Óxidos de Nitrógeno/química , Oxidación-Reducción , Suelo/química , Microbiología del Suelo , Sulfatos/química
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...