Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
bioRxiv ; 2024 Mar 06.
Artículo en Inglés | MEDLINE | ID: mdl-38712048

RESUMEN

Background & Aims: Despite increasing therapeutic options in the treatment of ulcerative colitis (UC), achieving disease remission remains a major clinical challenge. Nonresponse to therapy is common and clinicians have little guidance in selecting the optimal therapy for an individual patient. This study examined whether patient-derived materials could predict individual clinical responsiveness to the Janus kinase (JAK) inhibitor, tofacitinib, prior to treatment initiation. Method: In 48 patients with UC initiating tofacitinib, we longitudinally collected clinical covariates, stool, and colonic biopsies to analyze the microbiota, transcriptome, and exome variations associated with clinical responsiveness at week 24. We established patient-derived organoids (n = 23) to determine how their viability upon stimulation with proinflammatory cytokines in the presence of tofacitinib related to drug responsiveness in patients. We performed additional biochemical analyses of organoids and primary tissues to identify the mechanism underlying differential tofacitinib sensitivity. Results: The composition of the gut microbiota, rectal transcriptome, inflammatory biomarkers, and exome variations were indistinguishable among UC patients prior to tofacitinib treatment. However, a subset of patient-derived organoids displayed reduced sensitivity to tofacitinib as determined by the ability of the drug to inhibit STAT1 phosphorylation and loss of viability upon cytokine stimulation. Remarkably, sensitivity of organoids to tofacitinib predicted individual clinical patient responsiveness. Reduced responsiveness to tofacitinib was associated with decreased levels of the cationic transporter MATE1, which mediates tofacitinib uptake. Conclusions: Patient-derived intestinal organoids predict and identify mechanisms of individual tofacitinib responsiveness in UC. Specifically, MATE1 expression predicted clinical response to tofacitinib.

2.
Am J Chin Med ; 51(2): 445-459, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36891981

RESUMEN

Dihydroartemisinin (DHA) has anticancer effects on multiple tumors, including those associated with breast cancer. This study aimed to investigate the mechanism causing DHA-reversing cisplatin (DDP) resistance in breast cancer. Relative mRNA and protein levels were tested using a qRT-PCR and western blot assay. Cell proliferation, viability, and apoptosis were evaluated using colony formation, MTT, and flow cytometry assays, respectively. Interaction of STAT3 and DDA1 was measured via a dual-luciferase reporter assay. The results showed that DDA1 and p-STAT3 levels were dramatically elevated in DDP-resistant cells. DHA treatment repressed proliferation and induced apoptosis of DDP-resistant cells by suppressing STAT3 phosphorylation; the inhibition ability was positively proportional to the DHA concentration. DDA1 knockdown inhibited cyclin expression, promoted G0/G1 phase arrest, restrained cell proliferation, and induced apoptosis of DDP-resistant cells. Furthermore, knockdown of STAT3 restrained proliferation and induced apoptosis and G0/G1 cell cycle arrest of DDP-resistant cells by targeting DDA1. DHA could restrain tumor proliferation of breast cancer via enhancing drug sensitivity of DDP-resistant cells through the STAT3/DDA1 signaling pathway.


Asunto(s)
Antineoplásicos , Neoplasias de la Mama , MicroARNs , Neoplasias Ováricas , Femenino , Humanos , Cisplatino/farmacología , Antineoplásicos/farmacología , Antineoplásicos/uso terapéutico , Neoplasias de la Mama/tratamiento farmacológico , Neoplasias de la Mama/genética , Neoplasias Ováricas/tratamiento farmacológico , Resistencia a Antineoplásicos/genética , Línea Celular Tumoral , Transducción de Señal/genética , Proliferación Celular , Apoptosis/genética , MicroARNs/metabolismo , Factor de Transcripción STAT3/genética , Factor de Transcripción STAT3/metabolismo
3.
Food Chem ; 413: 135656, 2023 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-36780856

RESUMEN

Recent studies emphasize the improved nutritional and functional status of fermented okara; however, little is known about the metabolite change during fermentation and how it alters metabolic pathways. A metabolomics approach based on untargeted LC-MS reveals metabolic changes in okara fermented by Bacillus subtilis DC-15. We identified 761 differential metabolites, with the highest abundances found in amino acids, dipeptides, fatty acids, small molecule sugars, and vitamins. Moreover, these identified metabolites were mapped to their respective biosynthesis pathways in order to gain a better understanding of the biochemical reactions triggered by fermentation. Based on Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis, 485 metabolites were enriched to metabolism-related pathways. They include 37 carbohydrate metabolites, 79 amino acid metabolites, and 22 lipid metabolites. As a result of okara fermentation, we observed a gradual enrichment of metabolites and stabilization of the compounds.


Asunto(s)
Bacillus subtilis , Espectrometría de Masas en Tándem , Cromatografía Liquida , Metabolómica , Fermentación
4.
Food Chem ; 407: 135168, 2023 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-36508867

RESUMEN

Hardening presents an inevitable challenge during the storage of high protein nutrition bars. Sericin peptide is the product of hydrolysis of sericin, a protein from the silkworm cocoon. Here in, the effects of sericin peptide addition on the hardening of high protein nutrition bars during 72 h of storage were investigated. The addition of sericin peptide to high protein nutrition bars reduced the hardening of the sample during the early storage, The main mechanism was to improve the mobility of water and small hydrophilic molecules, which slowed down the phase separation. As well, after sericin peptide addition, the ζ- potential, the content of secondary structure, and the surface hydrophobicity of the samples were also changed, which prevented the self-aggregation of proteins. These results indicate that SRP can be used as a promising anti-hardening ingredient in the food industry to improve the texture of food products.


Asunto(s)
Bombyx , Sericinas , Animales , Sericinas/química , Bombyx/química , Estado Nutricional , Péptidos
5.
Crit Rev Food Sci Nutr ; : 1-13, 2022 Oct 22.
Artículo en Inglés | MEDLINE | ID: mdl-36271691

RESUMEN

Nutrition-gut cross-talk holds a vital position in sustaining intestinal function, and micronutrient metabolism has emerged as the foremost metabolic pathway to preserve gut homeostasis. Among micronutrients, B vitamins have evolved prior to DNA/RNA and are known for their vital roles for major evolutionary transitions in extant organisms. Despite their universal requirement and critical role, not all the three domains of life are endowed with a natural ability for de novo B vitamins synthesis. The human gut microbiome constitutes prototrophs and auxotroph which are entirely dependent on dietary intake and gut microbial production of B vitamins. The syntrophic metabolism involving cross-feeding of B vitamins and community-wide exchange between commensal bacteria elicit important changes in the diversity and composition of the human gut microbiome. Hereto, we discuss the B-vitamins sharing among prototrophic and auxotrophic gut bacteria, their absorption in small intestine and transport in distal gut, functional role in relation to the gut homeostasis and symptoms linked to their deficiency. We also briefly explore their potential involvement as psychobiotics in brain energetic metabolism (kynurenines/tryptophan pathway) for neurological functions and highlight their deficiency related malfunctioning.

6.
Pharm Res ; 39(11): 2699-2707, 2022 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-36163410

RESUMEN

INTRODUCTION: Nanoparticle-mediated gene therapy has found substantial clinical impact, primarily focused on lipid-based nanoparticles. In comparison with lipid nanoparticles, polymeric particles may have certain advantages such as increased biocompatibility and controlled release. Our prior studies have found that polymeric mesoscale nanoparticles exhibited specific targeting to the renal proximal tubules. Thus, in this study, we sought to identify formulation parameters that allow for development of polymeric mesoscale nanoparticles encapsulating functional mRNA for delivery into tubular epithelial cells. METHODS: We evaluated particle uptake in vitro prior to exploring formulation parameters related to introduction of a primary mixture of polymer in acetonitrile and hydrophilic mRNA in water. Finally, we evaluated their functionality in a renal tubular epithelial cell line. RESULTS: We found that MNPs are endocytosed within 15 min and that the mesoscale nanoparticle formulation procedure was generally robust to introduction of a primary mixture and encapsulation of mRNA. These particles exhibited substantial uptake in renal cells in vitro and rapid (< 1 h) expression of a model mCherry fluorescent protein. CONCLUSION: We anticipate these findings having potential in the delivery of specific gene therapies for renal disorders and cancer.


Asunto(s)
Nanopartículas , ARN Mensajero/genética , Liposomas , Polímeros
7.
Food Chem ; 387: 132947, 2022 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-35427869

RESUMEN

The utilization of major edible soy-waste (okara) remains a challenge due to its poor digestion, nutritional imbalance (lack of B-vitamins), and undesirable off-flavors. Herein, fresh okara was enzymatically hydrolyzed and then fermented using the B2-overproducing Lactiplantibacillus plantarum UFG169 strain. SEM micrographs showed the microporous and honeycombed structures on the surface of okara. The off-flavors were reduced, and the essential amino acids content was significantly increased in fermented okara. The higher ß-glucosidase activity, increased aglycone isoflavones, and in situ riboflavin (B2) were associated with the enhanced antioxidant potential of the fermented okara. The in vitro digestion of okara resulted in reduced particle size, higher protein digestibility, improved aggregation, lower protein molecular chains, and increased polyphenols. Overall, our study indicated the improved nutrition and digestibility of B2 bio-enriched okara.


Asunto(s)
Glycine max , Isoflavonas , Digestión , Fermentación , Hidrólisis , Isoflavonas/metabolismo , Glycine max/química
8.
J Agric Food Chem ; 70(12): 3818-3831, 2022 Mar 30.
Artículo en Inglés | MEDLINE | ID: mdl-35302755

RESUMEN

Epidemiological evidence emphasizes that ariboflavinosis can lead to oxidative stress, which in turn may mediate the initiation and progression of liver injury and intestinal inflammation. Although vitamin B2 has gained worldwide attention for its antioxidant defense, the relationship between B2 status, oxidative stress, inflammatory response, and intestinal homeostasis remains indistinct. Herein, we developed a B2 depletion-repletion BALB/c mice model to investigate the ameliorative effects of B2 bioenriched fermented soymilk (B2FS) on ariboflavinosis, accompanied by oxidative stress, inflammation, and gut microbiota modulation in response to B2 deficiency. In vivo results revealed that the phenotypic ariboflavinosis symptoms, growth rate, EGRAC status, and hepatic function reverted to normal after B2FS supplementation. B2FS significantly elevated CAT, SOD, T-AOC, and compromised MDA levels in the serum, simultaneously up-regulated Nrf2, CAT, and SOD2, and down-regulated Keap1 gene in the colon. The histopathological characteristics revealed significant alleviation in the liver and intestinal inflammation, confirmed by the downregulation of inflammatory (IL-1ß and IL-6) and nuclear transcription (NF-κB) factors after B2FS supplementation. B2FS also increased the abundance and diversity of gut microbiota, increased the relative abundance of Prevotella and Absiella, as well as decreased Proteobacteria, Fusobacteria, Synergistetes, and Cyanobacteria in strong conjunction with antioxidant, anti-inflammatory properties, and gut homeostasis along with the remarkable increase in cecal SCFAs content. We hereby reveal that B2FS can effectively alleviate deleterious ariboflavinosis associated with oxidative stress mediated liver injury, chronic intestinal inflammation, and gut dysbiosis in the B2 depletion-repletion mice model via activation of the Nrf2 signaling pathway.


Asunto(s)
Microbioma Gastrointestinal , Animales , Inflamación/tratamiento farmacológico , Inflamación/metabolismo , Proteína 1 Asociada A ECH Tipo Kelch/metabolismo , Hígado/metabolismo , Ratones , Factor 2 Relacionado con NF-E2/genética , Factor 2 Relacionado con NF-E2/metabolismo , Estrés Oxidativo , Riboflavina/metabolismo
9.
Food Res Int ; 145: 110419, 2021 07.
Artículo en Inglés | MEDLINE | ID: mdl-34112422

RESUMEN

Due to highly nutritious and well-known prebiotic nature, okara (soy by-product) can improve the physiological benefits of probiotic consumption by enhancing the physicochemical stability and bioavailability of bacteria and metabolites, partially in food matrices and then in gastrointestinal tract. Initially, vitamin B2 producing probiotic Lactobacillus plantarum UFG10 was immobilized with 4% okara for soy milk fermentation. SEM micrographs showed firm adherence of UFG10 to okara surface depicting efficient immobilization. Soy milk fermented with okara immobilized UFG10 showed enhanced ß-glucosidase activity, stimulating the biotransformation of isoflavones from glucosides (daidzin, from 27.78 to 9.84 µg/mL; genistin, from 32.58 to 8.33 µg/mL) to aglycones (daidzein, from 0.19 to 30.84 µg/mL; genistein, from 1.42 to 33.10 µg/mL) and higher B2 production (1.53 µg/mL, 12 h) confirmed by HPLC. Okara addition and B2 enrichment could yield relatively higher antioxidant strength than control soy milk. PLSR correlation revealed the effects of okara and B2 on the functional properties of soy milk. After okara immobilization, soy milk showed higher soy protein digestibility after in vitro digestion for 225 min, higher aggregation, and lower protein molecular chains, qualitatively confirmed with Atomic force microscope. Okara immobilized bacterial cells exhibited relatively greater resistance up to 55.1% (p < 0.05) in simulated GIT, indicating okara as an ideal substrate for an efficient immobilization which ultimately improved the fate of soy B2 and protein bioaccessibility and functional products such as isoflavones for micro structural design of soy milk with improved nutrition and digestibility.


Asunto(s)
Leche de Soja , Digestión , Fermentación , Riboflavina , Vitaminas
10.
Food Funct ; 11(10): 8424-8443, 2020 Oct 21.
Artículo en Inglés | MEDLINE | ID: mdl-33043925

RESUMEN

Flavonoids represent polyphenolic plant secondary metabolites with a general structure of a 15-carbon skeleton comprising two phenyl rings and a heterocyclic ring. Over 5000 natural flavonoids (flavanones, flavanonols, and flavans) from various plants have been characterized. Several studies provide novel and promising insights into morin hydrate for its different biological activities against a series of metabolic syndromes. The present review is a rendition of its sources, chemistry, functional potency, and protective effects on metabolic syndromes ranging from cancer to brain injury. Most importantly this systematic review article also highlights the mechanisms of interest to morin-mediated management of metabolic disorders. The key mechanisms (anti-oxidative and anti-inflammatory) responsible for its therapeutic potential are well featured after collating the in vitro and in vivo study reports. As a whole, based on the prevailing information rationalizing its medicinal use, morin can be identified as a therapeutic agent for the expansion of human health.


Asunto(s)
Flavonoides , Ingredientes Alimentarios , Alimentos Funcionales , Enfermedades Metabólicas/tratamiento farmacológico , Animales , Antiinflamatorios/farmacología , Antineoplásicos/farmacología , Antioxidantes/farmacología , Flavonoides/administración & dosificación , Flavonoides/química , Flavonoides/metabolismo , Flavonoides/farmacología , Ingredientes Alimentarios/análisis , Humanos , Enfermedades Metabólicas/dietoterapia , Neoplasias/tratamiento farmacológico
11.
Appl Microbiol Biotechnol ; 104(13): 5759-5772, 2020 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-32388761

RESUMEN

The influence of riboflavin (B2)-overproducing lactobacilli on the antioxidant status, isoflavone conversion, off-flavor reduction, amino acid profile, and viscosity of B2-bio-enriched fermented soymilk was investigated. Results showed that B2 in fermented soymilk was notably increased from 0.2 to 3.8 µg/mL for Lactobacillus fermentum UFG169 and to 1.9 µg/mL for Lactobacillus plantarum UFG10. The apparent viscosity significantly changed with rising acidity and agglutination of protein. The off-flavor volatile substances (hexanal and nonanal) were significantly reduced in fermented soymilk. Furthermore, a large amount of glucoside form isoflavones was deglycosylated into bioactive aglycones after 4 h up to 32 h. B2 content and isoflavones significantly improved the antioxidant status of soymilk. Partial least squares regression analysis correlated the strain activity and fermentation time with the improved nutritional and functional soymilk qualities. This study demonstrated the strategy for strain development for B2-bio-enriched fermentation to extend the health-promoting benefits of soymilk and soy-related foods. KEY POINTS: • B2-enriched fermentation enhanced the nutrition and functional status of soymilk. • Fermentation time significantly affected the apparent viscosity of fermented soymilk. • Off-flavor volatile substances were significantly reduced or even diminished. • Increased B2and bioactive isoflavones contributed to improved antioxidant potential.


Asunto(s)
Alimentos Fermentados/microbiología , Alimentos Funcionales/microbiología , Lactobacillus/metabolismo , Riboflavina/metabolismo , Leche de Soja , Antioxidantes/análisis , Antioxidantes/metabolismo , Biotransformación , Recuento de Colonia Microbiana , Fermentación , Alimentos Fermentados/análisis , Microbiología de Alimentos , Alimentos Funcionales/análisis , Concentración de Iones de Hidrógeno , Isoflavonas/análisis , Isoflavonas/metabolismo , Lactobacillus/clasificación , Lactobacillus/crecimiento & desarrollo , Viabilidad Microbiana , Viscosidad , Compuestos Orgánicos Volátiles/análisis , Compuestos Orgánicos Volátiles/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...