Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 292
Filtrar
1.
Cell Rep ; 43(9): 114691, 2024 Sep 24.
Artículo en Inglés | MEDLINE | ID: mdl-39235944

RESUMEN

The strategy of lowering cholesterol levels by promoting cholesterol excretion is still lacking, and few molecular targets act on multiple cholesterol metabolic processes. In this study, we find that Nogo-B deficiency/inhibition simultaneously promotes hepatic uptake of cholesterol and cholesterol excretion. Nogo-B deficiency decreases cholesterol levels by activating ATP-binding cassette transporters (ABCs), apolipoprotein E (ApoE), and low-density lipoprotein receptor (LDLR) expression. We discover that Nogo-B interacts with liver X receptor α (LXRα), and Nogo-B deficiency inhibits ubiquitination degradation of LXRα, thereby enhancing its function on cholesterol excretion. Decreased cellular cholesterol levels further activate SREBP2 and LDLR expression, thereby promoting hepatic uptake of cholesterol. Nogo-B inhibition decreases atherosclerotic plaques and cholesterol levels in mice, and Nogo-B levels are correlated to cholesterol levels in human plasma. In this study, Nogo-B deficiency/inhibition not only promotes hepatic uptake of blood cholesterol but also facilitates cholesterol excretion. This study reports a strategy to lower cholesterol levels by inhibiting Nogo-B expression to promote hepatic cholesterol uptake and cholesterol excretion.


Asunto(s)
Colesterol , Hipercolesterolemia , Proteínas Nogo , Receptores de LDL , Animales , Colesterol/metabolismo , Proteínas Nogo/metabolismo , Humanos , Hipercolesterolemia/metabolismo , Hipercolesterolemia/patología , Ratones , Receptores de LDL/metabolismo , Receptores X del Hígado/metabolismo , Hígado/metabolismo , Ratones Endogámicos C57BL , Proteína 2 de Unión a Elementos Reguladores de Esteroles/metabolismo , Apolipoproteínas E/metabolismo , Masculino , Ratones Noqueados , Ubiquitinación
2.
J Med Chem ; 2024 Sep 26.
Artículo en Inglés | MEDLINE | ID: mdl-39324796

RESUMEN

The development of a reversal agent that can rapidly reverse clinically used nondepolarizing neuromuscular blocking agents (NMBAs) has long been a challenge. Here, we report the synthesis of a series of highly water-soluble acyclic cucurbit[n]urils (acCBs). Systematic structure-activity relationship studies reveal that introducing two propylidene units on the peripheral benzene rings not only remarkably improves the activity of the corresponding derivative acCB6 (FY 3451) in reversing the neuromuscular block of rocuronium, cisatracurium, vecuronium, and pancuronium, the four clinically used NMBAs, through stable inclusion, but also allows for high water-solubility as well as a maximum tolerated dose (2000 mg/kg on rats). In vivo experiments with rats show that, at the identical dose of 25 mg/kg, for rocuronium, vecuronium, and pancuronium, acCB6 can achieve a recovery time shorter than that of sugammadex for rocuronium and, at the dose of 100 mg/kg, realize comparably rapid reversal for cisatracurium.

3.
Artículo en Inglés | MEDLINE | ID: mdl-39205622

RESUMEN

BACKGROUND: Vaccination is an important strategy for overcoming public health crises. Considerable studies have analyzed strategies to promote people's willingness to vaccinate, but few have explored effective strategies based on the stage of vaccine launch. This study considered the framing effect theory to explore whether egoism, altruism and loss frames can boost vaccination willingness when people feel the vaccine is effective in the late stage of vaccine launch. METHODS: This study designed a scenario experiment consisting of three experimental groups (egoism, altruism and loss frames) and one control group (non-framed). Participants (N = 1085) from China were randomly assigned to any of the four groups. Vaccination willingness, perceived vaccine effectiveness and control variables included perceived susceptibility, perceived severity, worry about the side effects of vaccination and socio-demographics were collected. RESULTS: Perceived vaccine effectiveness and message frames can increase people's willingness to be vaccinated. Message frames can amplify the positive impact of perceived effectiveness on vaccination willingness. Moreover, loss-framed messages had a stronger amplification effect than egoistic- and altruistic-framed messages. CONCLUSIONS: Governments and other health authorities should prioritize the loss-framed approach when constructing vaccination slogans to maximize vaccination willingness when vaccines are considered effective at the late implementation stage of the vaccine strategy.

4.
Insects ; 15(8)2024 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-39194819

RESUMEN

Herbivorous insects harbor a variety of insect-specific viruses (ISVs) some of which are considered to be valuable biological agents for potential applications in biological defense and control strategies. Leaf beetles with chewing mouthparts are particularly known for their capacity to disrupt plant tissue while feeding, often creating openings that can act as entry points for plant pathogens. In this study, we have identified two new negative-sense RNA viruses infecting the leaf beetle Aulacophora indica, an important member of the Chrysomelidae family. These recently discovered viruses belong to the viral families Nyamiviridae and Chuviridae and have been preliminarily named Aulacophora indica nyami-like virus 1 (AINlV1) and Aulacophora indica chu-like virus 1 (AIClV1), respectively. The complete genomic sequences of these viruses were obtained using rapid amplification of cDNA ends (RACE) techniques. Detailed analysis of their genomic structures has confirmed their similarity to other members within their respective families. Furthermore, analysis of virus-derived small interfering RNA (vsiRNA) demonstrated a high abundance and typical vsiRNA pattern of AINlV1 and AIClV1, offering substantial evidence to support their classification as ISVs. This research enhances our understanding of viral diversity within insects.

5.
Int J Mol Sci ; 25(16)2024 Aug 21.
Artículo en Inglés | MEDLINE | ID: mdl-39201749

RESUMEN

In mammals, 17-beta hydroxysteroid dehydrogenase 2 (Hsd17b2) enzyme specifically catalyzes the oxidation of the C17 hydroxyl group and efficiently regulates the activities of estrogens and androgens to prevent diseases induced by hormone disorders. However, the functions of the hsd17b2 gene involved in animal sex differentiation are still largely unclear. The ricefield eel (Monopterus albus), a protogynous hermaphroditic fish with a small genome size (2n = 24), is usually used as an ideal model to study the mechanism of sex differentiation in vertebrates. Therefore, in this study, hsd17b2 gene cDNA was cloned and its mRNA expression profiles were determined in the ricefield eel. The cloned cDNA fragment of hsd17b2 was 1230 bp, including an open reading frame of 1107 bp, encoding 368 amino acid residues with conserved catalytic subunits. Moreover, real-time quantitative reverse transcription polymerase chain reaction (RT-qPCR) analysis showed that hsd17b2 mRNA expressed strongly in the ovaries at early developmental stages, weakly in liver and intestine, and barely in testis and other tissues. In particular, hsd17b2 mRNA expression was found to peak in ovaries of young fish and ovotestis at the early stage, and eventually declined in gonads from the late ovotestis to testis. Likewise, chemical in situ hybridization results indicated that the hsd17b2 mRNA signals were primarily detected in the cytoplasm of oogonia and oocytes at stage I-II, subsequently concentrated in the granulosa cells around the oocytes at stage Ⅲ-Ⅳ, but undetectable in mature oocytes and male germ cells. Intriguingly, in ricefield eel ovaries, hsd17b2 mRNA expression could be significantly reduced by 17ß-estradiol (E2) or tamoxifen (17ß-estradiol inhibitor, E2I) induction at a low concentration (10 ng/mL) and increased by E2I induction at a high concentration (100 ng/mL). On the other hand, both the melatonin (MT) and flutamide (androgen inhibitor, AI) induction could significantly decrease hsd17b2 mRNA expression in the ovary of ricefield eel. This study provides a clue for demonstrating the mechanism of sexual differentiation in fish. The findings of our study imply that the hsd17b2 gene could be a key regulator in sexual differentiation and modulate sex reversal in the ricefield eel and other hermaphroditic fishes.


Asunto(s)
Clonación Molecular , Anguilas , Animales , Femenino , Masculino , Anguilas/genética , Filogenia , Diferenciación Sexual/genética , Secuencia de Aminoácidos , Proteínas de Peces/genética , Proteínas de Peces/metabolismo , Ovario/metabolismo , Ovario/efectos de los fármacos , Procesos de Determinación del Sexo/genética , Smegmamorpha/genética , Smegmamorpha/metabolismo , 17-Hidroxiesteroide Deshidrogenasas/genética , 17-Hidroxiesteroide Deshidrogenasas/metabolismo , Testículo/metabolismo , Testículo/efectos de los fármacos , Regulación del Desarrollo de la Expresión Génica/efectos de los fármacos
6.
Foods ; 13(13)2024 Jun 23.
Artículo en Inglés | MEDLINE | ID: mdl-38998484

RESUMEN

Citrus fruits, renowned for their abundant of phytochemicals and bioactive compounds, hold a prominent position as commercially grown fruits with health-promoting properties. In this context, tangerine peel (Citri Reticulatae Pericarpium, CRP) is garnering attention as a byproduct of citrus fruits. Within the framework of the circular economy, CRP has emerged as a focal point due to its potential health benefits. CRP, extracted from Citrus reticulata cv. and aged for over three years, has attracted increasing attention for its diverse health-promoting effects, including its anticancer, cardiovascular-protecting, gastrointestinal-modulating, antioxidant, anti-inflammatory, and neuroprotective properties. Moreover, CRP positively impacts skeletal health and various physiological functions. This review delves into the therapeutic effects and molecular mechanisms of CRP. The substantial therapeutic potential of CRP highlights the need for further research into its applications in both food and medicine. As a value-added functional ingredient, CRP and its constituents are extensively utilized in the development of food and health supplements, such as teas, porridges, and traditional medicinal formulations.

7.
Plants (Basel) ; 13(13)2024 Jun 26.
Artículo en Inglés | MEDLINE | ID: mdl-38999603

RESUMEN

Both melatonin and hydrogen sulfide (H2S) mitigate chromium (Cr) toxicity in plants, but the specific interaction between melatonin and H2S in Cr detoxification remains unclear. In this study, the interaction between melatonin and H2S in Cr detoxification was elucidated by measuring cell wall polysaccharide metabolism and antioxidant enzyme activity in maize. The findings revealed that exposure to Cr stress (100 µM K2Cr2O7) resulted in the upregulation of L-/D-cysteine desulfhydrase (LCD/DCD) gene expression, leading to a 77.8% and 27.3% increase in endogenous H2S levels in maize leaves and roots, respectively. Similarly, the endogenous melatonin system is activated in response to Cr stress. We found that melatonin had a significant impact on the relative expression of LCD/DCD, leading to a 103.3% and 116.7% increase in endogenous H2S levels in maize leaves and roots, respectively. In contrast, NaHS had minimal effects on the relative mRNA expression of serotonin-Nacetyltransferase (SNAT) and endogenous melatonin levels. The production of H2S induced by melatonin is accompanied by an increase in Cr tolerance, as evidenced by elevated gene expression, elevated cell wall polysaccharide content, increased pectin methylesterase activity, and improved antioxidant enzyme activity. The scavenging of H2S decreases the melatonin-induced Cr tolerance, while the inhibitor of melatonin synthesis, p-chlorophenylalanine (p-CPA), has minimal impact on H2S-induced Cr tolerance. In conclusion, our findings suggest that H2S serves as a downstream signaling molecule involved in melatonin-induced Cr tolerance in maize.

8.
Foods ; 13(14)2024 Jul 19.
Artículo en Inglés | MEDLINE | ID: mdl-39063362

RESUMEN

The fruits of Siraitia grosvenorii (S. grosvenorii) have attracted a lot of scientific interest as part of the current healthy diet. S. grosvenorii has diverse health-promoting effects, including antioxidant, anti-inflammatory, antimicrobial, respiratory modulation, metabolic modulation, antitumor, and neuroprotective effects, as well as gastrointestinal function modulation. As a plant resource, S. grosvenorii has broad application prospects, which promotes the development of the horticultural industry. Moreover, Mogroside has attracted much attention as an important active ingredient of S. grosvenorii. This review provides an in-depth exploration of the distribution, chemical composition, health benefits, and application of S. grosvenorii, particularly Mogroside. This comprehensive exploration highlights the important therapeutic potential of S. grosvenorii, prompting further research into its applications. As value-added functional ingredients, S. grosvenorii and its constituents have significant potential for disease prevention and are widely used in the development of food and health supplements.

9.
Molecules ; 29(11)2024 May 31.
Artículo en Inglés | MEDLINE | ID: mdl-38893475

RESUMEN

Oxidative stress significantly contributes to ageing and disease, with antioxidants holding promise in mitigating its effects. Functional foods rich in flavonoids offer a potential strategy to mitigate oxidative damage by free radicals. We investigated the protective effects of mulberry leaf flavonoids (MLF) against H2O2-induced oxidative damage in HepG2 cells. It assessed the inhibitory effect of MLF (62.5-500 µg/mL) on H2O2-induced oxidative damage by analyzing cellular morphology and oxidative stress markers, including ROS production, mitochondrial membrane potential, antioxidant enzyme levels, MDA, and apoptosis-related proteins. The results demonstrated that MLF prevented spiny cell formation triggered by 750 µM H2O2 and significantly reduced ROS levels, restored mitochondrial membrane potential, decreased lactate dehydrogenase and alanine transaminase leakage, and reduced MDA content induced by H2O2. MLF also modulated antioxidant enzymes and attenuated oxidative damage to HepG2 cell DNA, as confirmed by staining techniques. These findings indicate the potential of MLF as a hepatoprotective agent against oxidative damage in HepG2 cells.


Asunto(s)
Antioxidantes , Flavonoides , Peróxido de Hidrógeno , Potencial de la Membrana Mitocondrial , Morus , Estrés Oxidativo , Hojas de la Planta , Especies Reactivas de Oxígeno , Humanos , Morus/química , Estrés Oxidativo/efectos de los fármacos , Células Hep G2 , Flavonoides/farmacología , Hojas de la Planta/química , Antioxidantes/farmacología , Especies Reactivas de Oxígeno/metabolismo , Potencial de la Membrana Mitocondrial/efectos de los fármacos , Extractos Vegetales/farmacología , Extractos Vegetales/química , Sustancias Protectoras/farmacología , Sustancias Protectoras/química , Apoptosis/efectos de los fármacos , Supervivencia Celular/efectos de los fármacos
10.
Comput Biol Med ; 178: 108690, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38879931

RESUMEN

Prevalent Gene Regulatory Network (GRN) construction methods rely on generalized correlation analysis. However, in biological systems, regulation is essentially a causal relationship that cannot be adequately captured solely through correlation. Therefore, it is more reasonable to infer GRNs from a causal perspective. Existing causal discovery algorithms typically rely on Directed Acyclic Graphs (DAGs) to model causal relationships, but it often requires traversing the entire network, which result in computational demands skyrocketing as the number of nodes grows and make causal discovery algorithms only suitable for small networks with one or two hundred nodes or fewer. In this study, we propose the SLIVER (cauSaL dIscovery Via dimEnsionality Reduction) algorithm which integrates causal structural equation model and graph decomposition. SLIVER introduces a set of factor nodes, serving as abstractions of different functional modules to integrate the regulatory relationships between genes based on their respective functions or pathways, thus reducing the GRN to the product of two low-dimensional matrices. Subsequently, we employ the structural causal model (SCM) to learn the GRN within the gene node space, enforce the DAG constraint in the low-dimensional space, and guide each factor to aggregate various functions through cosine similarity. We evaluate the performance of the SLIVER algorithm on 12 real single cell transcriptomic datasets, and demonstrate it outperforms other 12 widely used methods both in GRN inference performance and computational resource usage. The analysis of the gene information integrated by factor nodes also demonstrate the biological explanation of factor nodes in GRNs. We apply it to scRNA-seq of Type 2 diabetes mellitus to capture the transcriptional regulatory structural changes of ß cells under high insulin demand.


Asunto(s)
Algoritmos , Redes Reguladoras de Genes , Análisis de la Célula Individual , Transcriptoma , Humanos , Análisis de la Célula Individual/métodos , Perfilación de la Expresión Génica , Biología Computacional/métodos , Modelos Genéticos
11.
J Exp Zool A Ecol Integr Physiol ; 341(8): 845-855, 2024 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-38855856

RESUMEN

Thyroid hormones (THs) play important roles in growth, development, morphogenesis, reproduction, and so on. They are mainly meditated by binding to thyroid hormone receptors (TRs) in vertebrates. As important members of the nuclear receptor superfamily, TRs and their ligands are involved in many biological processes. To investigate the potential roles of TRs in the gonadal differentiation and sex change, we cloned and characterized the TRs genes in protogynous rice field eel (Monopterus albus). In this study, three types of TRs were obtained, which were TRαA, TRαB and TRß, encoding preproproteins of 336-, 409- and 415-amino acids, respectively. Multiple alignments of the three putative TRs protein sequences showed they had a higher similarity. Tissue expression analysis showed that TRαA mainly expressed in the gonad, while TRαB and TRß in the brain. During female-to-male sex reversal, the expression levels of all the three TRs showed a similar trend of increase followed by a decrease in the gonad. Intraperitoneal injection of triiodothyronine (T3) stimulated the expression of TRαA and TRαB, while it had no significant change on the expression of TRß in the ovary. Gonadotropin-releasing hormone analogue (GnRHa) injection also significantly upregulated the expression levels of TRαA and TRαB after 6 h, while it had no significant effect on TRß. These results demonstrated that TRs were involved in the gonadal differentiation and sex reversal, and TRα may play more important roles than TRß in reproduction by the regulation of GnRHa in rice field eel.


Asunto(s)
Anguilas , Receptores de Hormona Tiroidea , Animales , Femenino , Masculino , Anguilas/genética , Anguilas/metabolismo , Receptores de Hormona Tiroidea/genética , Receptores de Hormona Tiroidea/metabolismo , Secuencia de Aminoácidos , Filogenia , Regulación de la Expresión Génica/fisiología , Regulación de la Expresión Génica/efectos de los fármacos , Diferenciación Sexual/genética , Organismos Hermafroditas/genética , Organismos Hermafroditas/metabolismo
12.
Zhonghua Yi Xue Yi Chuan Xue Za Zhi ; 41(6): 749-752, 2024 Jun 10.
Artículo en Chino | MEDLINE | ID: mdl-38818563

RESUMEN

OBJECTIVE: To analyze the clinical characteristics and genetic basis of a male patient with primary infertility caused by Acephalic spermatozoa syndrome. METHODS: A patient who had presented at the Henan Provincial People's Hospital on October 1, 2022 was selected as the study subject. Clinical data and results of laboratory exams and sperm electron microscopy were collected. The patient was subjected to whole exome sequencing (WES), and candidate variants were verified by Sanger sequencing and pathogenicity analysis. RESULTS: WES revealed that the patient has harbored compound heterozygous variants of the PMFBP1 gene, namely c.853del (p.Ala285Leufs*24) and c.1276A>T (p.Lys426X), which were both unreported previously. Sanger sequencing suggested that the c.853del (p.Ala285Leufs*24) variant has derived from his deceased mother, whilst the c.1276A>T (p.Lys426X) variant has derived from his father. Based on the guidelines from the American College of Medical Genetics and Genomics (ACMG), both variants were classified as pathogenic (PVS1+PM2_Supporting+PP4). CONCLUSION: The compound heterozygous variants of the PMFBP1 gene probably underlay the Acephalic spermatozoa syndrome in this patient. The discovery of the novel variants has also enriched the mutational spectrum of Acephalic spermatozoa syndrome.


Asunto(s)
Teratozoospermia , Adulto , Humanos , Masculino , Secuenciación del Exoma , Pruebas Genéticas , Infertilidad Masculina/genética , Mutación , Espermatozoides , Teratozoospermia/genética
13.
J Nanobiotechnology ; 22(1): 262, 2024 May 17.
Artículo en Inglés | MEDLINE | ID: mdl-38760823

RESUMEN

BACKGROUND: Nanoplastics, are emerging pollutants, present a potential hazard to food security and human health. Titanium dioxide nanoparticles (Nano-TiO2), serving as nano-fertilizer in agriculture, may be important in alleviating polystyrene nanoplastics (PSNPs) toxicity. RESULTS: Here, we performed transcriptomic, metabolomic and physiological analyzes to identify the role of Nano-TiO2 in regulating the metabolic processes in PSNPs-stressed maize seedlings (Zea mays L.). The growth inhibition by PSNPs stress was partially relieved by Nano-TiO2. Furthermore, when considering the outcomes obtained from RNA-seq, enzyme activity, and metabolite content analyses, it becomes evident that Nano-TiO2 significantly enhance carbon and nitrogen metabolism levels in plants. In comparison to plants that were not subjected to Nano-TiO2, plants exposed to Nano-TiO2 exhibited enhanced capabilities in maintaining higher rates of photosynthesis, sucrose synthesis, nitrogen assimilation, and protein synthesis under stressful conditions. Meanwhile, Nano-TiO2 alleviated the oxidative damage by modulating the antioxidant systems. Interestingly, we also found that Nano-TiO2 significantly enhanced the endogenous melatonin levels in maize seedlings. P-chlorophenylalanine (p-CPA, a melatonin synthesis inhibitor) declined Nano-TiO2-induced PSNPs tolerance. CONCLUSIONS: Taken together, our data show that melatonin is involved in Nano-TiO2-induced growth promotion in maize through the regulation of carbon and nitrogen metabolism.


Asunto(s)
Carbono , Melatonina , Nitrógeno , Poliestirenos , Titanio , Zea mays , Zea mays/efectos de los fármacos , Zea mays/metabolismo , Zea mays/crecimiento & desarrollo , Titanio/farmacología , Nitrógeno/metabolismo , Carbono/metabolismo , Melatonina/farmacología , Poliestirenos/farmacología , Plantones/efectos de los fármacos , Plantones/metabolismo , Plantones/crecimiento & desarrollo , Nanopartículas/química , Transducción de Señal/efectos de los fármacos , Fotosíntesis/efectos de los fármacos , Estrés Oxidativo/efectos de los fármacos
14.
Adv Sci (Weinh) ; 11(29): e2403337, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38810101

RESUMEN

Sepsis is an infection-triggered, rapidly progressive systemic inflammatory syndrome with a high mortality rate. Currently, there are no promising therapeutic strategies for managing this disease in the clinic. Heparanase plays a crucial role in the pathology of sepsis, and its inhibition can significantly relieve related symptoms. Here, a novel heparanase inhibitor CV122 is rationally designed and synthesized, and its therapeutic potential for sepsis with Lipopolysaccharide (LPS) and Cecal Ligation and Puncture (CLP)-induced sepsis mouse models are evaluated. It is found that CV122 potently inhibits heparanase activity in vitro, protects cell surface glycocalyx structure, and reduces the expression of adhesion molecules. In vivo, CV122 significantly reduces the systemic levels of proinflammatory cytokines, prevents organ damage, improves vitality, and efficiently protects mice from sepsis-induced death. Mechanistically, CV122 inhibits the activity of heparanase, reduces its expression in the lungs, and protects glycocalyx structure of lung tissue. It is also found that CV122 provides effective protection from organ damage and death caused by Crimean-Congo hemorrhagic fever virus (CCHFV) infection. These results suggest that CV122 is a potential drug candidate for sepsis therapy targeting heparanase by inhibiting cytokine storm.


Asunto(s)
Síndrome de Liberación de Citoquinas , Modelos Animales de Enfermedad , Glucuronidasa , Sepsis , Animales , Sepsis/tratamiento farmacológico , Ratones , Glucuronidasa/metabolismo , Glucuronidasa/antagonistas & inhibidores , Síndrome de Liberación de Citoquinas/tratamiento farmacológico , Ratones Endogámicos C57BL , Masculino , Citocinas/metabolismo
15.
Angew Chem Int Ed Engl ; 63(27): e202405297, 2024 07 01.
Artículo en Inglés | MEDLINE | ID: mdl-38651620

RESUMEN

Bacterial cell-surface polysaccharides are involved in various biological processes and have attracted widespread attention as potential targets for developing carbohydrate-based drugs. However, the accessibility to structurally well-defined polysaccharide or related active oligosaccharide domains remains challenging. Herein, we describe an efficiently stereocontrolled approach for the first total synthesis of a unique pentasaccharide repeating unit containing four difficult-to-construct 1,2-cis-glycosidic linkages from the cell wall polysaccharide of Cutibacterium acnes C7. The features of our approach include: 1) acceptor-reactivity-controlled glycosylation to stereoselectively construct two challenging rare 1,2-cis-ManA2,3(NAc)2 (ß-2,3-diacetamido-2,3-dideoxymannuronic acid) linkages, 2) combination use of 6-O-tert-butyldiphenylsilyl (6-O-TBDPS)-mediated steric shielding effect and ether solvent effect to stereoselectively install a 1,2-cis-glucosidic linkage, 3) bulky 4,6-di-O-tert-butylsilylene (DTBS)-directed glycosylation to stereospecifically construct a 1,2-cis-galactosidic linkage, 4) stereoconvergent [2+2+1] and one-pot chemoselective glycosylation to rapidly assemble the target pentasaccharide. Immunological activity tests suggest that the pentasaccharide can induce the production of proinflammatory cytokine TNF-α in a dose-dependent manner.


Asunto(s)
Pared Celular , Oligosacáridos , Pared Celular/química , Pared Celular/inmunología , Estereoisomerismo , Oligosacáridos/química , Oligosacáridos/síntesis química , Ratones , Propionibacteriaceae/química , Animales , Polisacáridos Bacterianos/química , Polisacáridos Bacterianos/inmunología , Polisacáridos Bacterianos/síntesis química , Glicosilación , Humanos
16.
Aging (Albany NY) ; 16(8): 6937-6953, 2024 04 19.
Artículo en Inglés | MEDLINE | ID: mdl-38643461

RESUMEN

AIMS: This study aimed to evaluate the effects of VC on SIMI in rats. METHODS: In this study, the survival rate of high dose VC for SIMI was evaluated within 7 days. Rats were randomly assigned to three groups: Sham group, CLP group, and high dose VC (500 mg/kg i.v.) group. The animals in each group were treated with drugs for 1 day, 3 days or 5 days, respectively. Echocardiography, myocardial enzymes and HE were used to detect cardiac function. IL-1ß, IL-6, IL-10 and TNF-α) in serum were measured using ELISA kits. Western blot was used to detect proteins related to apoptosis, inflammation, autophagy, MAPK, NF-κB and PI3K/Akt/mTOR signaling pathways. RESULTS: High dose VC improved the survival rate of SIMI within 7 days. Echocardiography, HE staining and myocardial enzymes showed that high-dose VC relieved SIMI in rats in a time-dependent manner. And compared with CLP group, high-dose VC decreased the expressions of pro-apoptotic proteins, while increased the expression of anti-apoptotic protein. And compared with CLP group, high dose VC decreased phosphorylation levels of Erk1/2, P38, JNK, NF-κB and IKK α/ß in SIMI rats. High dose VC increased the expression of the protein Beclin-1 and LC3-II/LC3-I ratio, whereas decreased the expression of P62 in SIMI rats. Finally, high dose VC attenuated phosphorylation of PI3K, AKT and mTOR compared with the CLP group. SIGNIFICANCE: Our results showed that high dose VC has a good protective effect on SIMI after continuous treatment, which may be mediated by inhibiting apoptosis and inflammatory, and promoting autophagy through regulating MAPK, NF-κB and PI3K/AKT/mTOR pathway.


Asunto(s)
Ácido Ascórbico , Autofagia , Lesiones Cardíacas , Miocardio , Sepsis , Animales , Ratas , Antiinflamatorios/farmacología , Antiinflamatorios/administración & dosificación , Apoptosis/efectos de los fármacos , Ácido Ascórbico/farmacología , Ácido Ascórbico/uso terapéutico , Autofagia/efectos de los fármacos , Lesiones Cardíacas/tratamiento farmacológico , Lesiones Cardíacas/etiología , Lesiones Cardíacas/metabolismo , Miocardio/metabolismo , Miocardio/patología , FN-kappa B/efectos de los fármacos , FN-kappa B/metabolismo , Fosfatidilinositol 3-Quinasas/efectos de los fármacos , Fosfatidilinositol 3-Quinasas/metabolismo , Proteínas Proto-Oncogénicas c-akt/efectos de los fármacos , Proteínas Proto-Oncogénicas c-akt/metabolismo , Ratas Sprague-Dawley , Sepsis/tratamiento farmacológico , Sepsis/complicaciones , Sepsis/metabolismo , Transducción de Señal/efectos de los fármacos , Serina-Treonina Quinasas TOR/efectos de los fármacos , Serina-Treonina Quinasas TOR/metabolismo
17.
Sci Total Environ ; 927: 172402, 2024 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-38608888

RESUMEN

Microbial fuel cells (MFCs) have significant potential for environmental remediation and energy recycling directly from refractory aromatic hydrocarbons. To boost the capacities of toluene removal and the electricity production in MFCs, this study constructed a polyaniline@carbon nanotube (PANI@CNT) bioanode with a three-dimensional framework structure. Compared with the control bioanode based on graphite sheet, the PANI@CNT bioanode increased the output voltage and toluene degradation kinetics by 2.27-fold and 1.40-fold to 0.399 V and 0.60 h-1, respectively. Metagenomic analysis revealed that the PANI@CNT bioanode promoted the selective enrichment of Pseudomonas, with the dual functions of degrading toluene and generating exogenous electrons. Additionally, compelling genomic evidence elucidating the relationship between functional genes and microorganisms was found. It was interesting that the genes derived from Pseudomonas related to extracellular electron transfer, tricarboxylic acid cycle, and toluene degradation were upregulated due to the existence of PANI@CNT. This study provided biomolecular insights into key genes and related microorganisms that effectively facilitated the organic pollutant degradation and energy recovery in MFCs, offering a novel alternative for high-performance bioanode.


Asunto(s)
Fuentes de Energía Bioeléctrica , Metagenómica , Nanotubos de Carbono , Tolueno , Tolueno/metabolismo , Compuestos de Anilina , Biodegradación Ambiental , Electricidad , Pseudomonas/metabolismo , Pseudomonas/genética , Electrodos
18.
J Gen Virol ; 105(4)2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38602389

RESUMEN

A negative-strand symbiotic RNA virus, tentatively named Nilaparvata lugens Bunyavirus (NLBV), was identified in the brown planthopper (BPH, Nilaparvata lugens). Phylogenetic analysis indicated that NLBV is a member of the genus Mobuvirus (family Phenuiviridae, order Bunyavirales). Analysis of virus-derived small interfering RNA suggested that antiviral immunity of BPH was successfully activated by NLBV infection. Tissue-specific investigation showed that NLBV was mainly accumulated in the fat-body of BPH adults. Moreover, NLBV was detected in eggs of viruliferous female BPHs, suggesting the possibility of vertical transmission of NLBV in BPH. Additionally, no significant differences were observed for the biological properties between NLBV-infected and NLBV-free BPHs. Finally, analysis of geographic distribution indicated that NLBV may be prevalent in Southeast Asia. This study provided a comprehensive characterization on the molecular and biological properties of a symbiotic virus in BPH, which will contribute to our understanding of the increasingly discovered RNA viruses in insects.


Asunto(s)
Hemípteros , Orthobunyavirus , Virus ARN , Animales , Femenino , Filogenia , Insectos , Virus ARN/genética
19.
Cell Biol Toxicol ; 40(1): 23, 2024 Apr 17.
Artículo en Inglés | MEDLINE | ID: mdl-38630355

RESUMEN

Cytosolic thiouridylase 2 (CTU2) is an enzyme modifying transfer RNAs post-transcriptionally, which has been implicated in breast cancer and melanoma development. And we found CTU2 participated in hepatocellular carcinoma (HCC) progression here. HepG2 cells as well as xenograft nude mice model were employed to investigate the role of CTU2 in HCC development in vitro and in vivo respectively. Further, we defined CTU2 as a Liver X receptor (LXR) targeted gene, with a typical LXR element in the CTU2 promoter. CTU2 expression was activated by LXR agonist and depressed by LXR knockout. Interestingly, we also found CTU2 took part in lipogenesis by directly enhancing the synthesis of lipogenic proteins, which provided a novel mechanism for LXR regulating lipid synthesis. Meanwhile, lipogenesis was active during cell proliferation, particularly in tumor cells. Reduction of CTU2 expression was related to reduced tumor burden and synergized anti-tumor effect of LXR ligands by inducing tumor cell apoptosis and inhibiting cell proliferation. Taken together, our study identified CTU2 as an LXR target gene. Inhibition of CTU2 expression could enhance the anti-tumor effect of LXR ligand in HCC, identifying CTU2 as a promising target for HCC treatment and providing a novel strategy for the application of LXR agonists in anti-tumor effect.


Asunto(s)
Carcinoma Hepatocelular , Neoplasias Hepáticas , Receptores X del Hígado , Animales , Femenino , Humanos , Ratones , Neoplasias de la Mama , Carcinoma Hepatocelular/genética , Modelos Animales de Enfermedad , Neoplasias Hepáticas/genética , Receptores X del Hígado/genética , Ratones Desnudos
20.
BMC Ophthalmol ; 24(1): 126, 2024 Mar 19.
Artículo en Inglés | MEDLINE | ID: mdl-38504225

RESUMEN

BACKGROUND: This study evaluates the impact of corneal power on the accuracy of 14 newer intraocular lens (IOL) calculation formulas in cataract surgery. The aim is to assess how these formulas perform across different corneal curvature ranges, thereby guiding more precise IOL selection. METHODS: In this retrospective case series, 336 eyes from 336 patients who underwent cataract surgery were studied. The cohort was divided into three groups according to preoperative corneal power. Key metrics analyzed included mean prediction error (PE), standard deviation of PE (SD), mean absolute prediction error (MAE), median absolute error (MedAE), and the percentage of eyes with PE within ± 0.25 D, 0.50 D, ± 0.75 D, ± 1.00 D and ± 2.00 D. RESULTS: In the flat K group (Km < 43 D), VRF-G, Emmetropia Verifying Optical Version 2.0 (EVO2.0), Kane, and Hoffer QST demonstrated lower SDs (± 0.373D, ± 0.379D, ± 0.380D, ± 0.418D, respectively) compared to the VRF formula (all P < 0.05). EVO2.0 and K6 showed significantly different SDs compared to Barrett Universal II (BUII) (all P < 0.02). In the medium K group (43 D ≤ Km < 46 D), VRF-G, BUII, Karmona, K6, EVO2.0, Kane, and Pearl-DGS recorded lower MAEs (0.307D to 0.320D) than Olsen (OLCR) and Castrop (all P < 0.03), with RBF3.0 having the second lowest MAE (0.309D), significantly lower than VRF and Olsen (OLCR) (all P < 0.05). In the steep K group (Km ≥ 46D), RBF3.0, K6, and Kane achieved significantly lower MAEs (0.279D, 0.290D, 0.291D, respectively) than Castrop (all P < 0.001). CONCLUSIONS: The study highlights the varying accuracy of newer IOL formulas based on corneal power. VRF-G, EVO2.0, Kane, K6, and Hoffer QST are highly accurate for flat corneas, while VRF-G, RBF3.0, BUII, Karmona, K6, EVO2.0, Kane, and Pearl-DGS are recommended for medium K corneas. In steep corneas, RBF3.0, K6, and Kane show superior performance.


Asunto(s)
Extracción de Catarata , Catarata , Lentes Intraoculares , Facoemulsificación , Humanos , Estudios Retrospectivos , Córnea , Ojo Artificial , Biometría , Refracción Ocular , Óptica y Fotónica , Longitud Axial del Ojo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...