Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 16 de 16
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
iScience ; 26(11): 108037, 2023 Nov 17.
Artículo en Inglés | MEDLINE | ID: mdl-37867939

RESUMEN

Myelin defects cause a collection of myelin disorders in the brain. The lack of human models has limited us from better understanding pathological mechanisms of myelin diseases. While human induced pluripotent stem cell (hiPSC)-derived spheroids or organoids have been used to study brain development and disorders, it has been difficult to recapitulate mature myelination in these structures. Here, we have developed a method to generate three-dimensional (3D) myelin spheroids from hiPSCs in a robust and reproducible manner. Using this method, we generated myelin spheroids from patient iPSCs to model Canavan disease (CD), a demyelinating disorder. By using CD patient iPSC-derived myelin spheroids treated with N-acetyl-aspartate (NAA), we were able to recapitulate key pathological features of the disease and show that high-level NAA is sufficient to induce toxicity on myelin sheaths. Our study has established a 3D human cellular platform to model human myelin diseases for mechanistic studies and drug discovery.

2.
MedComm (2020) ; 4(5): e400, 2023 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-37822714

RESUMEN

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is the causal agent for coronavirus disease 2019 (COVID-19). Although vaccines have helped to prevent uncontrolled viral spreading, our understanding of the fundamental biology of SARS-CoV-2 infection remains insufficient, which hinders effective therapeutic development. Here, we found that Apolipoprotein E (ApoE), a lipid binding protein, is hijacked by SARS-CoV-2 for infection. Preincubation of SARS-CoV-2 with a neutralizing antibody specific to ApoE led to inhibition of SARS-CoV-2 infection. The ApoE neutralizing antibody efficiently blocked SARS-CoV-2 infection of human iPSC-derived astrocytes and air-liquid interface organoid models in addition to human ACE2-expressing HEK293T cells and Calu-3 lung cells. ApoE mediates SARS-CoV-2 entry through binding to its cellular receptors such as the low density lipoprotein receptor (LDLR). LDLR knockout or ApoE mutations at the receptor binding domain or an ApoE mimetic peptide reduced SARS-CoV-2 infection. Furthermore, we detected strong membrane LDLR expression on SARS-CoV-2 Spike-positive cells in human lung tissues, whereas no or low ACE2 expression was detected. This study provides a new paradigm for SARS-CoV-2 cellular entry through binding of ApoE on the lipoviral particles to host cell receptor(s). Moreover, this study suggests that ApoE neutralizing antibodies are promising antiviral therapies for COVID-19 by blocking entry of both parental virus and variants of concern.

3.
Cell Rep ; 42(8): 112841, 2023 08 29.
Artículo en Inglés | MEDLINE | ID: mdl-37494190

RESUMEN

The C allele of rs11136000 variant in the clusterin (CLU) gene represents the third strongest known genetic risk factor for late-onset Alzheimer's disease. However, whether this single-nucleotide polymorphism (SNP) is functional and what the underlying mechanisms are remain unclear. In this study, the CLU rs11136000 SNP is identified as a functional variant by a small-scale CRISPR-Cas9 screen. Astrocytes derived from isogenic induced pluripotent stem cells (iPSCs) carrying the "C" or "T" allele of the CLU rs11136000 SNP exhibit different CLU expression levels. TAR DNA-binding protein-43 (TDP-43) preferentially binds to the "C" allele to promote CLU expression and exacerbate inflammation. The interferon response and CXCL10 expression are elevated in cytokine-treated C/C astrocytes, leading to inhibition of oligodendrocyte progenitor cell (OPC) proliferation and myelination. Accordingly, elevated CLU and CXCL10 but reduced myelin basic protein (MBP) expression are detected in human brains of C/C carriers. Our study uncovers a mechanism underlying reduced white matter integrity observed in the CLU rs11136000 risk "C" allele carriers.


Asunto(s)
Clusterina , Células Madre Pluripotentes Inducidas , Células Precursoras de Oligodendrocitos , Humanos , Alelos , Astrocitos , Proliferación Celular , Clusterina/genética , Predisposición Genética a la Enfermedad , Polimorfismo de Nucleótido Simple/genética
4.
Adv Sci (Weinh) ; 10(23): e2206910, 2023 08.
Artículo en Inglés | MEDLINE | ID: mdl-37271923

RESUMEN

Demyelinating disorders are among the most common and debilitating diseases in neurology. Canavan disease (CD) is a lethal demyelinating disease caused by mutation of the aspartoacylase (ASPA) gene, which leads to the accumulation of its substrate N-acetyl-l-aspartate (NAA), and consequently demyelination and vacuolation in the brain. In this study, hypoimmunogenic human induced pluripotent stem cell (iPSC)-derived oligodendrocyte progenitor cells (OPC) are developed from a healthy donor as an "off-the-shelf" cell therapy. Hypoimmunogenic iPSCs are generated through CRISPR/Cas9 editing of the human leukocyte antigen (HLA) molecules in healthy donor-derived iPSCs and differentiated into OPCs. The OPCs are engrafted into the brains of CD (nur7) mice and exhibit widespread distribution in the brain. The engrafted OPCs mature into oligodendrocytes that express the endogenous wildtype ASPA gene. Consequently, the transplanted mice exhibit elevated human ASPA expression and enzymatic activity and reduced NAA level in the brain. The transplanted OPCs are able to rescue major pathological features of CD, including defective myelination, extensive vacuolation, and motor function deficits. Moreover, the hypoimmunogenic OPCs exhibit low immunogenicity both in vitro and in vivo. The hypoimmunogenic OPCs can be used as "off-the-shelf" universal donor cells to treat various CD patients and many other demyelinating disorders, especially autoimmune demyelinating diseases, such as multiple sclerosis.


Asunto(s)
Enfermedad de Canavan , Células Madre Pluripotentes Inducidas , Esclerosis Múltiple , Células Precursoras de Oligodendrocitos , Humanos , Ratones , Animales , Vaina de Mielina/metabolismo , Vaina de Mielina/patología , Células Madre Pluripotentes Inducidas/patología , Células Precursoras de Oligodendrocitos/patología , Oligodendroglía/metabolismo , Enfermedad de Canavan/genética , Enfermedad de Canavan/metabolismo , Enfermedad de Canavan/patología
5.
iScience ; 25(6): 104391, 2022 Jun 17.
Artículo en Inglés | MEDLINE | ID: mdl-35637731

RESUMEN

Canavan disease (CD) is a devastating neurological disease that lacks effective therapy. Because CD is caused by mutations of the aspartoacylase (ASPA) gene, we introduced the wild-type (WT) ASPA gene into patient iPSCs through lentiviral transduction or CRISPR/Cas9-mediated gene editing. We then differentiated the WT ASPA-expressing patient iPSCs (ASPA-CD iPSCs) into NPCs and showed that the resultant ASPA-CD NPCs exhibited potent ASPA enzymatic activity. The ASPA-CD NPCs were able to survive in brains of transplanted CD mice. The engrafted ASPA-CD NPCs reconstituted ASPA activity in CD mouse brains, reduced the abnormally elevated level of NAA in both brain tissues and cerebrospinal fluid (CSF), and rescued hallmark pathological phenotypes of the disease, including spongy degeneration, myelination defects, and motor function impairment in transplanted CD mice. These genetically modified patient iPSC-derived NPCs represent a promising cell therapy candidate for CD, a disease that has neither a cure nor a standard treatment.

6.
Adv Sci (Weinh) ; 7(23): 2002155, 2020 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-33304759

RESUMEN

Canavan disease (CD) is a fatal leukodystrophy caused by mutation of the aspartoacylase (ASPA) gene, which leads to deficiency in ASPA activity, accumulation of the substrate N-acetyl-L-aspartate (NAA), demyelination, and spongy degeneration of the brain. There is neither a cure nor a standard treatment for this disease. In this study, human induced pluripotent stem cell (iPSC)-based cell therapy is developed for CD. A functional ASPA gene is introduced into patient iPSC-derived neural progenitor cells (iNPCs) or oligodendrocyte progenitor cells (iOPCs) via lentiviral transduction or TALEN-mediated genetic engineering to generate ASPA iNPC or ASPA iOPC. After stereotactic transplantation into a CD (Nur7) mouse model, the engrafted cells are able to rescue major pathological features of CD, including deficient ASPA activity, elevated NAA levels, extensive vacuolation, defective myelination, and motor function deficits, in a robust and sustainable manner. Moreover, the transplanted mice exhibit much prolonged survival. These genetically engineered patient iPSC-derived cellular products are promising cell therapies for CD. This study has the potential to bring effective cell therapies, for the first time, to Canavan disease children who have no treatment options. The approach established in this study can also benefit many other children who have deadly genetic diseases that have no cure.

7.
J Mol Cell Biol ; 12(3): 230-244, 2020 04 24.
Artículo en Inglés | MEDLINE | ID: mdl-31282930

RESUMEN

Establishment of the primordial follicle (PF) pool is pivotal for the female reproductive lifespan; however, the mechanism of primordial folliculogenesis is poorly understood. Here, the transcription factor SP1 was shown to be essential for PF formation in mice. Our results showed that SP1 is present in both oocytes and somatic cells during PF formation in the ovary. Knockdown of Sp1 expression, especially in pregranulosa cells, significantly suppressed nest breakdown, oocyte apoptosis, and PF formation, suggesting that SP1 expressed by somatic cells functions in the process of primordial folliculogenesis. We further demonstrated that SP1 governs the recruitment and maintenance of Forkhead box L2-positive (FOXL2+) pregranulosa cells using an Lgr5-EGFP-IRES-CreERT2 (Lgr5-KI) reporter mouse model and a FOXL2+ cell-specific knockdown model. At the molecular level, SP1 functioned mainly through manipulation of NOTCH2 expression by binding directly to the promoter of the Notch2 gene. Finally, consistent with the critical role of granulosa cells in follicle survival in vitro, massive loss of oocytes in Sp1 knockdown ovaries was evidenced before puberty after the ovaries were transplanted under the renal capsules. Conclusively, our results reveal that SP1 controls the establishment of the ovarian reserve by regulating pregranulosa cell development in the mammalian ovary.


Asunto(s)
Células de la Granulosa/citología , Células de la Granulosa/metabolismo , Factor Nuclear 1-alfa del Hepatocito/metabolismo , Folículo Ovárico/metabolismo , Animales , Apoptosis/genética , Biomarcadores , Susceptibilidad a Enfermedades , Femenino , Técnica del Anticuerpo Fluorescente , Proteína Forkhead Box L2/metabolismo , Regulación del Desarrollo de la Expresión Génica , Técnicas de Silenciamiento del Gen , Ratones , Oocitos/metabolismo , Folículo Ovárico/crecimiento & desarrollo , Insuficiencia Ovárica Primaria/etiología , Insuficiencia Ovárica Primaria/metabolismo , Regiones Promotoras Genéticas , Receptor Notch2/genética , Receptor Notch2/metabolismo , Maduración Sexual/genética , Transducción de Señal
8.
Cell Stem Cell ; 23(2): 239-251.e6, 2018 Aug 02.
Artículo en Inglés | MEDLINE | ID: mdl-30075130

RESUMEN

Alexander disease (AxD) is a leukodystrophy that primarily affects astrocytes and is caused by mutations in the astrocytic filament gene GFAP. While astrocytes are thought to have important roles in controlling myelination, AxD animal models do not recapitulate critical myelination phenotypes and it is therefore not clear how AxD astrocytes contribute to leukodystrophy. Here, we show that AxD patient iPSC-derived astrocytes recapitulate key features of AxD pathology such as GFAP aggregation. Moreover, AxD astrocytes inhibit proliferation of human iPSC-derived oligodendrocyte progenitor cells (OPCs) in co-culture and reduce their myelination potential. CRISPR/Cas9-based correction of GFAP mutations reversed these phenotypes. Transcriptomic analyses of AxD astrocytes and postmortem brains identified CHI3L1 as a key mediator of AxD astrocyte-induced inhibition of OPC activity. Thus, this iPSC-based model of AxD not only recapitulates patient phenotypes not observed in animal models, but also reveals mechanisms underlying disease pathology and provides a platform for assessing therapeutic interventions.


Asunto(s)
Enfermedad de Alexander/genética , Enfermedad de Alexander/patología , Astrocitos/metabolismo , Proteína Ácida Fibrilar de la Glía/genética , Células Madre Pluripotentes Inducidas/metabolismo , Modelos Biológicos , Mutación , Células Precursoras de Oligodendrocitos/patología , Enfermedad de Alexander/metabolismo , Animales , Proliferación Celular , Células Cultivadas , Proteína Ácida Fibrilar de la Glía/metabolismo , Células Madre Pluripotentes Inducidas/patología , Ratones , Ratones Noqueados , Células Precursoras de Oligodendrocitos/metabolismo
9.
Sci Rep ; 6: 36869, 2016 11 16.
Artículo en Inglés | MEDLINE | ID: mdl-27848973

RESUMEN

Well-timed progression of primordial folliculogenesis is essential for mammalian female fertility. Progesterone (P4) inhibits primordial follicle formation under physiological conditions; however, P4 receptor that mediates this effect and its underlying mechanisms are unclear. In this study, we used an in vitro organ culture system to show that progesterone receptor membrane component 1 (PGRMC1) mediated P4-induced inhibition of oocyte meiotic prophase I and primordial follicle formation. We found that membrane-impermeable BSA-conjugated P4 inhibited primordial follicle formation similar to that by P4. Interestingly, PGRMC1 and its partner serpine1 mRNA-binding protein 1 were highly expressed in oocytes in perinatal ovaries. Inhibition or RNA interference of PGRMC1 abolished the suppressive effect of P4 on follicle formation. Furthermore, P4-PGRMC1 interaction blocked oocyte meiotic progression and decreased intra-oocyte cyclic AMP (cAMP) levels in perinatal ovaries. cAMP analog dibutyryl cAMP reversed P4-PGRMC1 interaction-induced inhibition of meiotic progression and follicle formation. Thus, our results indicated that PGRMC1 mediated P4-induced suppression of oocyte meiotic progression and primordial folliculogenesis by decreasing intra-oocyte cAMP levels.


Asunto(s)
Profase Meiótica I/efectos de los fármacos , Proteínas de la Membrana/metabolismo , Oocitos/efectos de los fármacos , Oocitos/fisiología , Folículo Ovárico/efectos de los fármacos , Progesterona/metabolismo , Receptores de Progesterona/metabolismo , Animales , AMP Cíclico/metabolismo , Femenino , Perfilación de la Expresión Génica , Ratones Endogámicos ICR , Técnicas de Cultivo de Órganos , Proteínas de Unión al ARN/biosíntesis
10.
J Cell Sci ; 129(11): 2202-12, 2016 06 01.
Artículo en Inglés | MEDLINE | ID: mdl-27084580

RESUMEN

Ovarian follicles are the basic functional units of female reproduction in the mammalian ovary. We show here that the protein a disintegrin and metalloproteinase domain 10 (ADAM10), a cell surface sheddase, plays an indispensable role in controlling primordial follicle formation by regulating the recruitment of follicle supporting cells in mice. We demonstrate that suppressing ADAM10 in vitro or deletion of Adam10 in vivo disrupts germline cyst breakdown and primordial follicle formation. Using a cell lineage tracing approach, we show that ADAM10 governs the recruitment of ovarian follicle cells by regulating the differentiation and proliferation of LGR5-positive follicle supporting progenitor cells. By detecting the development of FOXL2-positive pregranulosa cells, we found that inhibiting ADAM10 reduced the number of FOXL2-positive cells in perinatal ovaries. Furthermore, inhibiting ADAM10 suppressed the activation of Notch signaling, and blocking Notch signaling also disrupted the recruitment of follicle progenitor cells. Taken together, these results show that ADAM10-Notch signaling in ovarian somatic cells governs the primordial follicle formation by controlling the development of ovarian pregranulosa cells. The proper recruitment of ovarian follicle supporting cells is essential for establishment of the ovarian reserve in mice.


Asunto(s)
Proteína ADAM10/metabolismo , Células de la Granulosa/metabolismo , Organogénesis , Receptores Notch/metabolismo , Transducción de Señal , Animales , Animales Recién Nacidos , Diferenciación Celular , Proliferación Celular , Femenino , Proteína Forkhead Box L2 , Factores de Transcripción Forkhead/metabolismo , Células Germinativas/metabolismo , Células de la Granulosa/citología , Ratones , Receptores Acoplados a Proteínas G/metabolismo , Células Madre/citología , Células Madre/metabolismo
11.
Development ; 143(10): 1778-87, 2016 05 15.
Artículo en Inglés | MEDLINE | ID: mdl-27013242

RESUMEN

Physiologically, the size of the primordial follicle pool determines the reproductive lifespan of female mammals, while its establishment largely depends on a process of germline cyst breakdown during the perinatal period. The mechanisms regulating this process are poorly understood. Here we demonstrate that c-Jun amino-terminal kinase (JNK) signaling is crucial for germline cyst breakdown and primordial follicle formation. JNK was specifically localized in oocytes and its activity increased as germline cyst breakdown progressed. Importantly, disruption of JNK signaling with a specific inhibitor (SP600125) or knockdown technology (Lenti-JNK-shRNAs) resulted in significantly suppressed cyst breakdown and primordial follicle formation in cultured mouse ovaries. Our results show that E-cadherin is intensely expressed in germline cysts, and that its decline is necessary for oocyte release from the cyst. However, inhibition of JNK signaling leads to aberrantly enhanced localization of E-cadherin at oocyte-oocyte contact sites. WNT4 expression is upregulated after SP600125 treatment. Additionally, similar to the effect of SP600125 treatment, WNT4 overexpression delays cyst breakdown and is accompanied by abnormal E-cadherin expression patterns. In conclusion, our results suggest that JNK signaling, which is inversely correlated with WNT4, plays an important role in perinatal germline cyst breakdown and primordial follicle formation by regulating E-cadherin junctions between oocytes in mouse ovaries.


Asunto(s)
Cadherinas/metabolismo , Células Germinativas/metabolismo , Proteínas Quinasas JNK Activadas por Mitógenos/metabolismo , Sistema de Señalización de MAP Quinasas , Organogénesis , Folículo Ovárico/metabolismo , Animales , Femenino , Técnicas de Silenciamiento del Gen , Proteínas Quinasas JNK Activadas por Mitógenos/antagonistas & inhibidores , Ratones , Proteolisis , Proteínas Proto-Oncogénicas c-mdm2/metabolismo , Proteína Wnt4/metabolismo
12.
Reproduction ; 151(2): 105-15, 2016 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-26554027

RESUMEN

The reserve of primordial follicles determines the reproductive ability of the female mammal over its reproductive life. The primordial follicle is composed of two types of cells: oocytes and surrounding pre-granulosa cells. However, the underlying mechanism regulating primordial follicle assembly is largely undefined. In this study, we found that gap junction communication (GJC) established between the ovarian cells in the perinatal mouse ovary may be involved in the process. First, gap junction structures between the oocyte and surrounding pre-granulosa cells appear at about 19.0 dpc (days post coitum). As many as 12 gap junction-related genes are upregulated at birth, implying that a complex communication may exist between ovarian cells, because specifically silencing the genes of individual gap junction proteins, such as Gja1, Gja4 or both, has no influence on primordial follicle assembly. On the other hand, non-specific blockers of GJC, such as carbenoxolone (CBX) and 18α-glycyrrhetinic acid (AGA), significantly inhibit mouse primordial follicle assembly. We proved that the temporal window for establishment of GJC in the fetal ovary is from 19.5 dpc to 1 dpp (days postpartum). In addition, the expression of ovarian somatic cell (OSC)-specific genes, such as Notch2, Foxl2 and Irx3, was negatively affected by GJC blockers, whereas oocyte-related genes, such as Ybx2, Nobox and Sohlh1, were hardly affected, implying that the establishment of GJC during this period may be more important to OSCs than to oocytes. In summary, our results indicated that GJC involves in the mouse primordial follicle assembly process at a specific temporal window that needs Notch signaling cross-talking.


Asunto(s)
Comunicación Celular , Uniones Comunicantes/fisiología , Células de la Granulosa/fisiología , Oocitos/fisiología , Folículo Ovárico/fisiología , Parto/fisiología , Animales , Animales Recién Nacidos , Comunicación Celular/efectos de los fármacos , Comunicación Celular/genética , Conexina 43/antagonistas & inhibidores , Conexina 43/genética , Conexinas/antagonistas & inhibidores , Conexinas/genética , Femenino , Uniones Comunicantes/efectos de los fármacos , Uniones Comunicantes/genética , Técnicas de Silenciamiento del Gen , Células de la Granulosa/citología , Células de la Granulosa/efectos de los fármacos , Masculino , Ratones , Ratones Transgénicos , Oocitos/citología , Oocitos/efectos de los fármacos , Folículo Ovárico/citología , Folículo Ovárico/efectos de los fármacos , Embarazo , ARN Interferente Pequeño/farmacología , Proteína alfa-4 de Unión Comunicante
13.
J Cell Physiol ; 230(12): 2998-3008, 2015 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-25953201

RESUMEN

In the mammalian ovaries, the primordial follicle pool determines the reproductive capability over the lifetime of a female. The primordial follicle is composed of two cell members, namely the oocyte and the pre-granulosa cells that encircle the oocyte. However, it is unclear what factors are involved in the reorganization of the two distinct cells into one functional unit. This study was performed to address this issue. Firstly, in an in vitro reconstruction system, dispersed ovarian cells from murine fetal ovaries at 19.0 days post coitum (dpc) reassembled into follicle-like structures, independent of the physical distance between the cells, implying that either oocytes or ovarian somatic cells (OSCs) were motile. We then carried out a series of transwell assay experiments, and determined that it was in fact 19.0 dpc OSCs (as opposed to oocytes), which exhibited a significant chemotactic response to both fetal bovine serum and oocytes themselves. We observed that S100A8, a multi-functional chemokine, may participate in the process as it is mainly expressed in oocytes within the cysts/plasmodia. S100A8 significantly promoted the number of migrating OSCs by 2.5 times in vitro, of which 66.9% were FOXL2 protein-positive cells, implying that the majority of motile OSCs were pre-granulosa cells. In addition, an S100A8-specific antibody inhibited the formation of follicle-like reconstruction cell mass in vitro. And, the primordial follicle formation was reduced when S100a8-specific siRNA was applied onto in vitro cultured 17.5 dpc ovary. Therefore, S100A8 could be a chemokine of oocyte origin, which attracts OSCs to form the primordial follicles.


Asunto(s)
Calgranulina A/metabolismo , Quimiotaxis , Células de la Granulosa/metabolismo , Oocitos/metabolismo , Folículo Ovárico/metabolismo , Animales , Calgranulina A/genética , Células Cultivadas , Técnicas de Cocultivo , Femenino , Proteína Forkhead Box L2 , Factores de Transcripción Forkhead/metabolismo , Regulación del Desarrollo de la Expresión Génica , Ratones , Folículo Ovárico/embriología , Interferencia de ARN , Transducción de Señal , Factores de Tiempo , Transfección
14.
Development ; 142(2): 343-51, 2015 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-25503411

RESUMEN

In mammalian ovaries, a fixed population of primordial follicles forms during the perinatal stage and the oocytes contained within are arrested at the dictyate stage of meiotic prophase I. In the current study, we provide evidence that the level of cyclic AMP (cAMP) in oocytes regulates oocyte meiotic prophase I and primordial folliculogenesis in the perinatal mouse ovary. Our results show that the early meiotic development of oocytes is closely correlated with increased levels of intra-oocyte cAMP. Inhibiting cAMP synthesis in fetal ovaries delayed oocyte meiotic progression and inhibited the disassembly and degradation of synaptonemal complex protein 1. In addition, inhibiting cAMP synthesis in in vitro cultured fetal ovaries prevented primordial follicle formation. Finally, using an in situ oocyte chromosome analysis approach, we found that the dictyate arrest of oocytes is essential for primordial follicle formation under physiological conditions. Taken together, these results suggest a role for cAMP in early meiotic development and primordial follicle formation in the mouse ovary.


Asunto(s)
AMP Cíclico/metabolismo , Profase Meiótica I/fisiología , Oocitos/metabolismo , Organogénesis/fisiología , Folículo Ovárico/embriología , Análisis de Varianza , Animales , Femenino , Técnica del Anticuerpo Fluorescente , Immunoblotting , Ratones , Microdisección , Interferencia de ARN , Radioinmunoensayo
15.
PLoS One ; 9(10): e111423, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-25350560

RESUMEN

In mammals, gonadotropins stimulate oocyte maturation via the epidermal growth factor (EGF) network, and the protein kinase C (PKC) signaling pathway mediates this process. Tumor necrosis factor-α converting enzyme (TACE) is an important protein responding to PKC activation. However, the detailed signaling cascade between PKC and TACE in follicle-stimulating hormone (FSH)-induced oocyte maturation in vitro remains unclear. In this study, we found that rottlerin (mallotoxin, MTX), the inhibitor of PKC δ and θ, blocked FSH-induced maturation of mouse cumulus-oocyte complexes (COCs) in vitro. We further clarified the relationship between two molecules downstream of PKC δ and θ and TACE in COCs: nicotinamide adenine dinucleotide phosphate (NADPH) oxidase (NOX) and its products, reactive oxygen species (ROS). We proved that the respective inhibitors of NOX, ROS and TACE could block FSH-stimulated oocyte maturation dose-dependently, but these inhibitory effects could be reversed partially by amphiregulin (Areg), an EGF family member. Notably, inhibition of PKC δ and θ prevented FSH-induced translocation of two cytosolic components of NOX, p47phox and p67phox, to the plasma membrane in cumulus cells. Moreover, FSH-induced TACE activity in cumulus cells was decreased markedly by inhibition of NOX and ROS. In conclusion, PKC δ and θ possibly mediate FSH-induced meiotic resumption in mouse COCs via NOX-ROS-TACE signaling pathway.


Asunto(s)
Proteínas ADAM/metabolismo , Hormona Folículo Estimulante/metabolismo , Isoenzimas/metabolismo , Oocitos/efectos de los fármacos , Proteína Quinasa C-delta/metabolismo , Proteína Quinasa C/metabolismo , Transducción de Señal , Proteína ADAM17 , Acetofenonas/química , Anfirregulina/metabolismo , Animales , Benzopiranos/química , Peso Corporal , Células Cultivadas , Femenino , Meiosis , Ratones , Microscopía Fluorescente , NADH NADPH Oxidorreductasas/metabolismo , NADPH Oxidasa 1 , Oocitos/citología , Oocitos/fisiología , Fagocitosis , Proteína Quinasa C-theta , Especies Reactivas de Oxígeno/metabolismo
16.
J Biol Chem ; 289(12): 8299-311, 2014 Mar 21.
Artículo en Inglés | MEDLINE | ID: mdl-24515103

RESUMEN

Physiologically, only a few primordial follicles are activated to enter the growing follicle pool each wave. Recent studies in knock-out mice show that early follicular activation depends on signaling from the tuberous sclerosis complex, the mammalian target of rapamycin complex 1 (mTORC1), phosphatase and tensin homolog deleted on chromosome 10, and phosphatidylinositol 3-kinase (PI3K) pathways. However, the manner in which these pathways are normally regulated, and whether or not TGF-ß acts on them are poorly understood. So, this study aims to identify whether or not TGF-ß acts on the process. Ovary organ culture experiments showed that the culture of 18.5 days post-coitus (dpc) ovaries with TGF-ß1 reduced the total population of oocytes and activated follicles, accelerated oocyte growth was observed in ovaries treated with TGF-ßR1 inhibitor 2-(5-chloro-2-fluorophenyl)pteridin-4-yl]pyridin-4-yl-amine (SD208) compared with control ovaries, the down-regulation of TGF-ßR1 gene expression also activated early primordial follicle oocyte growth. We further showed that there was dramatically more proliferation of granulosa cells in SD208-treated ovaries and less proliferation in TGF-ß1-treated ovaries. Western blot and morphological analyses indicated that TGF-ß signaling manipulated primordial follicle growth through tuberous sclerosis complex/mTORC1 signaling in oocytes, and the mTORC1-specific inhibitor rapamycin could partially reverse the stimulated effect of SD208 on the oocyte growth and decreased the numbers of growing follicles. In conclusion, our results suggest that TGF-ß signaling plays an important physiological role in the maintenance of the dormant pool of primordial follicles, which functions through activation of p70 S6 kinase 1 (S6K1)/ribosomal protein S6 (rpS6) signaling in mouse ovaries.


Asunto(s)
Oocitos/crecimiento & desarrollo , Ovario/citología , Ovario/crecimiento & desarrollo , Proteínas Serina-Treonina Quinasas/metabolismo , Receptores de Factores de Crecimiento Transformadores beta/metabolismo , Factor de Crecimiento Transformador beta1/metabolismo , Animales , Proliferación Celular , Regulación hacia Abajo , Femenino , Regulación del Desarrollo de la Expresión Génica , Masculino , Diana Mecanicista del Complejo 1 de la Rapamicina , Ratones , Complejos Multiproteicos/metabolismo , Oocitos/metabolismo , Oocitos/ultraestructura , Técnicas de Cultivo de Órganos , Folículo Ovárico/crecimiento & desarrollo , Folículo Ovárico/metabolismo , Folículo Ovárico/ultraestructura , Ovario/metabolismo , Ovario/ultraestructura , Proteínas Serina-Treonina Quinasas/genética , Receptor Tipo I de Factor de Crecimiento Transformador beta , Receptores de Factores de Crecimiento Transformadores beta/genética , Proteínas Quinasas S6 Ribosómicas 70-kDa/metabolismo , Transducción de Señal , Serina-Treonina Quinasas TOR/metabolismo , Factor de Crecimiento Transformador beta1/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...