Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Eur J Nutr ; 62(7): 2841-2854, 2023 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-37358571

RESUMEN

PURPOSE: Soybean glycinin (11S) and ß-conglycinin (7S) are major antigenic proteins in soybean and can induce a variety of allergic reactions in the young animals. This study aimed to investigate the effect of 7S and 11S allergens on the intestine of piglets. METHODS: Thirty healthy 21-day-old weaned "Duroc × Long White × Yorkshire" piglets were randomly divided into three groups fed with the basic diet, the 7S supplemented basic diet, or the 11S supplemented basic diet for 1 week. Allergy markers, intestinal permeability, oxidative stress, and inflammatory reactions were detected, and we observed different sections of intestinal tissue. The expressions of genes and proteins related to NOD-like receptor thermal protein domain associated protein 3 (NLRP-3) signaling pathway were detected by IHC, RT-qPCR, and WB. RESULTS: Severe diarrhea and decreased growth rate were observed in the 7S and 11S groups. Typical allergy markers include IgE production and significant elevations of histamine and 5-hydroxytryptamine (5-HT). More aggressive intestinal inflammation and barrier dysfunction were observed in the experimental weaned piglets. In addition, 7S and 11S supplementation increased the levels of 8-hydroxy-2 deoxyguanosine (8-OHdG) and nitrotyrosine, triggering oxidative stress. Furthermore, higher expression levels of NLRP-3 inflammasome ASC, caspase-1, IL-1ß, and IL-18 were observed in the duodenum, jejunum, and ileum. CONCLUSION: We confirmed that 7S and 11S damaged the intestinal barrier of weaned piglets and may be associated with the onset of oxidative stress and inflammatory response. However, the molecular mechanism underlying these reactions deserves further study.


Asunto(s)
Globulinas , Hipersensibilidad , Animales , Porcinos , Glycine max/metabolismo , Proteínas de Soja/efectos adversos , Proteínas de Soja/metabolismo , Intestinos , Globulinas/metabolismo , Estrés Oxidativo
2.
J Anim Sci ; 99(10)2021 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-34436591

RESUMEN

Sirtuin 1 (SIRT1), an NAD-dependent protein deacetylase, plays a central role in the control of lipid metabolism in nonruminants. However, the role of SIRT1 in hepatic lipid metabolism in dairy cows with fatty liver is not well known. Thus, we used isolated primary bovine hepatocytes to determine the role of SIRT1 in protecting cells against oleic acid (OA)-induced steatosis. Recombinant adenoviruses to overexpress (AD-GFP-SIRT1-E) or knockdown (AD-GFP-SIRT1-N) SIRT1 were used for transduction of hepatocytes. Calf hepatocytes isolated from five female calves (1 d old, 30 to 40 kg) were used to determine both time required and the lowest dose of OA that could induce triacylglycerol (TAG) accumulation. Analyses indicated that 0.25 mM OA for 24 h was suitable to induce TAG accumulation. In addition, OA not only led to an increase in TAG, but also upregulated mRNA and protein abundance of sterol regulatory element-binding transcription factor 1 (SREBF1) and downregulated SIRT1 and peroxisome proliferator-activated receptor-gamma coactivator 1 alpha (PPARGC1A). Thus, these in vitro conditions were deemed optimal for subsequent experiments. Calf hepatocytes were cultured and incubated with OA (0.25 mM) for 24 h, followed by adenoviral AD-GFP-SIRT1-E or AD-GFP-SIRT1-N transduction for 48 h. Overexpression of SIRT1 led to greater protein and mRNA abundance of SIRT1 along with fatty acid oxidation-related genes including PPARGC1A, peroxisome proliferator-activated receptor alpha (PPARA), retinoid X receptor α (RXRA), and ratio of phospho-acetyl-CoA carboxylase alpha (p-ACACA)/total acetyl-CoA carboxylase alpha (ACACA). In contrast, it resulted in lower protein and mRNA abundance of genes related to lipid synthesis including SREBF1, fatty acid synthase (FASN), apolipoprotein E (APOE), and low-density lipoprotein receptor (LDLR). The concentration of TAG decreased due to SIRT1 overexpression. In contrast, silencing SIRT1 led to lower protein and mRNA abundance of SIRT1, PPARGC1A, PPARA, RXRA, and greater protein and mRNA abundance of SREBF1, FASN, APOE, and LDLR. Further, those responses were accompanied by greater content of cellular TAG and total cholesterol (TC). Overall, data from these in vitro studies indicated that SIRT1 is involved in the regulation of lipid metabolism in calf hepatocytes subjected to an increase in the supply of OA. Thus, it is possible that alterations in SIRT1 abundance and activity in vivo contribute to development of fatty liver in dairy cows.


Asunto(s)
Hígado Graso , Metabolismo de los Lípidos , Animales , Bovinos , Hígado Graso/veterinaria , Femenino , Hepatocitos/metabolismo , Hígado/metabolismo , Ácido Oléico/metabolismo , Sirtuina 1/genética , Sirtuina 1/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...