RESUMEN
Background: Calvatia gigantea (CG) is widely used as a traditional Chinese medicine for wound treatment. In this study, we aimed to determine the effects of CG extract (CGE) on diabetic wound healing and the commensal wound microbiome. Method: A wound model was established using leptin receptor-deficient db/db mice, with untreated mice as the control group and CGE-treated mice as the treatment group. The wound healing rate, inflammation and histology were analyzed. Additionally, wound microbiome was evaluated via 16S ribosomal RNA (rRNA) gene sequencing. Results: CGE significantly accelerated the healing of diabetic ulcer wounds, facilitated re-epithelialization, and downregulated the transcription levels of the inflammatory cytokines, interleukin-1ß and tumor necrosis factor-α. Furthermore, CGE treatment positively affected the wound microbiome, promoting diversity of the microbial community and enrichment of Escherichia-Shigella bacteria in the CGE-treated group. Conclusions: Overall, CGE enhanced diabetic wound healing by modulating the wound microbiome and facilitating macrophage polarization during inflammation. These findings suggest modulation of the commensal wound microbiome using medicinal plants as a potential therapeutic strategy for diabetic wounds.
RESUMEN
Rationale: Noxious stimuli are often perceived as itchy in patients with chronic dermatitis (CD); however, itch and pain mechanisms of CD are not known. Methods: TRPV1 involvement in CD was analyzed using a SADBE induced CD-like mouse model, and several loss- and gain-of-function mouse models. Trigeminal TRPV1 channel and MrgprA3+ neuron functions were analyzed by calcium imaging and whole-cell patch-clamp recordings. Lesional CD-like skin from mice were analyzed by unbiased metabolomic analysis. 20-HETE availability in human and mouse skin were determined by LC/MS and ELISA. And finally, HET0016, a selective 20-HETE synthase inhibitor, was used to evaluate if blocking skin TRPV1 activation alleviates CD-associated chronic itch or pain. Results: While normally a pain inducing chemical, capsaicin induced both itch and pain in mice with CD condition. DREADD silencing of MrgprA3+ primary sensory neurons in these mice selectively decreased capsaicin induced scratching, but not pain-related wiping behavior. In the mice with CD condition, MrgprA3+ neurons showed elevated ERK phosphorylation. Further experiments showed that MrgprA3+ neurons from MrgprA3;Braf mice, which have constitutively active BRAF in MrgprA3+ neurons, were significantly more excitable and responded more strongly to capsaicin. Importantly, capsaicin induced both itch and pain in MrgprA3;Braf mice in an MrgprA3+ neuron dependent manner. Finally, the arachidonic acid metabolite 20-HETE, which can activate TRPV1, was significantly elevated in the lesional skin of mice and patients with CD. Treatment with the selective 20-HETE synthase inhibitor HET0016 alleviated itch in mice with CD condition. Conclusion: Our results demonstrate that 20-HETE activates TRPV1 channels on sensitized MrgprA3+ neurons, and induces allokinesis in lesional CD skin. Blockade of 20-HETE synthesis or silencing of TRPV1-MrgprA3+ neuron signaling offers promising therapeutic strategies for alleviating CD-associated chronic itch.
Asunto(s)
Amidinas , Dermatitis , Ácidos Hidroxieicosatetraenoicos , Proteínas Proto-Oncogénicas B-raf , Humanos , Animales , Capsaicina/farmacología , Prurito , Dolor , Enfermedad Crónica , Modelos Animales de Enfermedad , Canales Catiónicos TRPVRESUMEN
Angelica sinensis is a medicinal plant widely used to treat multiple diseases in Asia and Europe, which contains numerous active components with therapeutic value. The interaction between root and rhizosphere microorganisms is crucial for the growth and quality formation of medicinal plants. But the micro-plant-metabolite regulation patterns for A. sinensis remain largely undetermined. Here, we collected roots and rhizosphere soils from A. sinensis in seedling stage (M) and picking stage (G), respectively cultivated for one year and two years, generated metabolite for roots, microbiota data for rhizospheres, and conducted a comprehensive analysis. Changes in metabolic and microbial communities of A.sinensis over growth were distinct. The composition of rhizosphere microbes in G was dominated by proteobacteria, which had a strong correlation with the synthesis of organic acids, while in M was dominated by Actinobacteria, which had a strong correlation with the synthesis of phthalide and other organoheterocyclic compounds, flavonoids, amines, and fatty acid. Additionally, co-occurrence network analysis identified that Arthrobacter was found to be strongly correlated with the accumulation of senkyunolide A and n-butylidenephthalide. JGI 0001001.H03 was found to be strongly correlated with the accumulation of chlorogenic acid. Based on rhizosphere microorganisms, this study investigated the correlation between root metabolism and rhizosphere microbiota of A. sinensis at different growth stages in traditional geoherb region, which could provide references for exploring the quality formation mechanism of A. sinensis in the future.
RESUMEN
The roots of Angelica sinensis (Oliv.) Diels are well known for their efficacy in promoting blood circulation. Although many studies have indicated that phthalides are the main chemical components responsible for the pharmacological properties of A. sinensis, the phthalide biosynthetic pathway and enzymes that transform different phthalides are still poorly understood. We identified 108 potential candidate isoforms for phthalide accumulation using transcriptome and metabolite profile analyses. Then, six enzymes, including phospho-2-dehydro-3-deoxyheptonate aldolase 2, shikimate dehydrogenase, primary amine oxidase, polyphenol oxidase, tyrosine decarboxylase, and shikimate O-hydroxycinnamoyl transferase, were identified and proven to be involved in phthalide accumulation by heterologously expressing these proteins in Escherichia coli. We proposed a possible mechanism underlying phthalide transformation and biosynthetic pathways in A. sinensis based on our findings. The results of our study can provide valuable information for understanding the mechanisms underlying phthalide accumulation and transformation and enable further development of quality control during the cultivation of A. sinensis.
RESUMEN
Although Scrophulariae Radix (root of Scrophularia ningpoensis) has received much attention, little is known about the nonmedicinal parts of S. ningpoensis. A comprehensive evaluation of the multibioactive constituents in the flowers, rhizomes, leaves, and stems of S. ningpoensis during different growth stages would be of value to fully understand the potential medicinal properties of all parts of the plant. Ultra-high-performance liquid chromatography coupled with triple quadrupole mass spectrometry was performed for accurately determining nine compounds in S. ningpoensis. The results indicated the content of total analytes in S. ningpoensis was in the order of flowers (81.82 mg/g) > roots (31.95 mg/g) > rhizomes (26.68 mg/g) > leaves (16.86 mg/g) > stems (14.35 mg/g). The chemometric analysis showed that these plant parts were rich in iridoids and should not be discarded during the processing of medicinal materials. Dynamic accumulation analysis suggested that the early flowering stage was the optimum time for harvesting flowers and appropriate amounts of stems and leaves. Moreover, considering the accumulation of constituents and biomass of medicinal materials, the medicinal parts should be harvested around December with the rhizomes attached. This research provides a theoretical basis and scientific evidence for comprehensive development and utilization of S. ningpoensis resources.
Asunto(s)
Medicamentos Herbarios Chinos/análisis , Extractos Vegetales/análisis , Scrophularia/química , Cromatografía Líquida de Alta Presión , Flores/química , Hojas de la Planta/química , Raíces de Plantas/química , Espectrometría de Masas en TándemRESUMEN
The root of Angelica sinensis is known throughout Asia for its traditional efficacy in invigorating and promoting blood circulation. The wild germplasm resources of A. sinensis was in short supply, and most of the commercial medicinal materials come from cultivation. To obtain the differences in the transcriptional levels of wild and cultivated of A. sinensis, the full-length transcriptome of A. sinensis was analyzed using PacBio SMRT three-generation high-throughput sequencing technology. Using the high-throughput sequencing platform Illumina HiSeq X Ten PE150, a root transcriptome dataset of wild and cultivated A.sinensis was obtained. The transcriptome sequencing analyses obtained 16.5 Gb database in wild and cultivated A.sinensis, after assembly steps, we obtain 113 906 transcript sequences(insfroms) with an average length of 1 466 nt. BLAST analysis indicated that 109 113(accounting for 95.79% of the total insfroms), 93 276(81.89%),60 638(53.24%),48 928(42.95%),42 876(37.64%)isofroms were successfully annotated in the NR, Swiss-port, GO, KO and KOG databases, respectively. The annotation information can be classified into three categories of biological processes, cellular components and molecular functions of GO classification, involving 128 KEGG standard metabolic pathways. Analysis of 25 463 differential insfroms, 15 090 higher expression in wild A. sinensis, and 10 373 higher in cultivated A. sinensis. In the enrichment analysis of GO and KEGG, differential insfroms were concentrated on the pathway of plant-pathogen interaction, MAPK signaling pathway-plant and plant hormone signal transduction. In this study, high-throughput sequencing was used to obtain the full-length transcription information of A. sinensis, and the overall characteristics of A. sinensis genetic information were clarified. By comparing the differential expression of wild and cultivated A. sinensis at the genetic level, it provides basic information for further screening and breeding of A. sinensis germplasm resources, resistance research and secondary metabolic pathway analysis.
Asunto(s)
Angelica sinensis , Transcriptoma , Asia , Análisis de Datos , Perfilación de la Expresión Génica , Secuenciación de Nucleótidos de Alto Rendimiento , Anotación de Secuencia MolecularRESUMEN
Plant-microorganism interaction in the rhizosphere is thought to play an important role in the formation of soil fertility, transformation and absorption of nutrients, growth and development of medicinal plants, and accumulation of medicinal ingredients. Yet, the role that they play in the phthalides accumulation of Angelica sinensis (Oliv.) Diels remains unclear. In the present study, we report a correlative analysis between rhizosphere microorganisms and phthalides accumulation in A. sinensis from Gansu, China where was the major production areas. Meanwhile, Bacillus was explored the potential functions in the plant growth and phthalide accumulation. Results revealed that the common bacterial species detected in six samples comprised 1150 OTUs which were involved in 368 genera, and predominant taxa include Actinobacteria, Acidobacteria, and Proteobacteria. The average contents of the six phthalides were 4.0329 mg/g. The correlation analysis indicated that 20 high abundance strains showed positive or negative correlations with phthalides accumulation. Flavobacterium, Nitrospira, Gaiella, Bradyrhizobium, Mycobacterium, Bacillus, RB41, Blastococcus, Nocardioides, and Solirubrobacter may be the key strains that affect phthalides accumulation on the genus level. By the plant-bacterial co-culture and fermentation, Bacillus which were isolated from rhizosphere soils can promote the plant growth, biomass accumulation and increased the contents of the butylidenephthalide (36â¼415%) while the ligustilide (12â¼67%) was decreased. Altogether, there is an interaction between rhizosphere microorganisms and phthalides accumulation in A. sinensis, Bacillus could promote butylidenephthalide accumulation while inhibiting ligustilide accumulation.
RESUMEN
Kojic acid is a kind of secondary metabolites, whose biosynthesis pathway remains unclear to date. It is produced industrially by microbial fermentation, and thus, mutagenesis breeding still plays a vital role for obtaining strains with high kojic acid production. The starting strain KA-11 isolated from mildewed fruits was identified as Aspergillus oryzae and then subjected to a combined mutagenesis program including microwave mutagenesis, UV irradiation, heat-LiCl, atmospheric, and room temperature plasma (ARTP). The kojic acid production was increased by 47.0%, 87.1%, 126.2%, and 292.3% compared with the starting strain KA-11 after each mutagenesis stage. A mutant strain AR-47 with kojic acid production of 96.5 g/L in flask-shake fermentation was finally obtained. The fermentation time also decreased from 7 to 5 days. Real-time quantitative PCR was used to determine the transcriptional expression levels of genes that may be relevant to kojic acid biosynthesis, including kojA, kojR, kojT, AO090113000141, AO090113000143, AO090113000145, nrtA, and laeA. The results showed that the transcriptional expression levels of all these genes in high yield strain AR-47 had increased compared with the starting strain KA-11.