Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 126
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Cells ; 13(13)2024 Jun 25.
Artículo en Inglés | MEDLINE | ID: mdl-38994954

RESUMEN

Previous research highlighted the involvement of the cannabinoid CB1 receptor in regulating the physiology of hepatocytes and hepatic stellate cells. The inhibition of the CB1 receptor via peripherally restricted CB1 receptor inverse agonist JD5037 has shown promise in inhibiting liver fibrosis in mice treated with CCl4. However, its efficacy in phospholipid transporter-deficiency-induced liver fibrosis remains uncertain. In this study, we investigated the effectiveness of JD5037 in Mdr2-/- mice. Mdr2 (Abcb4) is a mouse ortholog of the human MDR3 (ABCB4) gene encoding for the canalicular phospholipid transporter. Genetic disruption of the Mdr2 gene in mice causes a complete absence of phosphatidylcholine from bile, leading to liver injury and fibrosis. Mdr2-/- mice develop spontaneous fibrosis during growth. JD5037 was orally administered to the mice for four weeks starting at eight weeks of age. Liver fibrosis, bile acid levels, inflammation, and injury were assessed. Additionally, JD5037 was administered to three-week-old mice to evaluate its preventive effects on fibrosis development. Our findings corroborate previous observations regarding global CB1 receptor inverse agonists. Four weeks of JD5037 treatment in eight-week-old Mdr2-/- mice with established fibrosis led to reduced body weight gains. However, contrary to expectations, JD5037 significantly exacerbated liver injury, evidenced by elevated serum ALT and ALP levels and exacerbated liver histology. Notably, JD5037-treated Mdr2-/- mice exhibited significantly heightened serum bile acid levels. Furthermore, JD5037 treatment intensified liver fibrosis, increased fibrogenic gene expression, stimulated ductular reaction, and upregulated hepatic proinflammatory cytokines. Importantly, JD5037 failed to prevent liver fibrosis formation in three-week-old Mdr2-/- mice. In summary, our study reveals the exacerbating effect of JD5037 on liver fibrosis in genetically MDR2-deficient mice. These findings underscore the need for caution in the use of peripherally restricted CB1R inverse agonists for liver fibrosis treatment, particularly in cases of dysfunctional hepatic phospholipid transporter.


Asunto(s)
Subfamilia B de Transportador de Casetes de Unión a ATP , Miembro 4 de la Subfamilia B de Casete de Unión a ATP , Cirrosis Hepática , Receptor Cannabinoide CB1 , Animales , Ratones , Receptor Cannabinoide CB1/genética , Receptor Cannabinoide CB1/metabolismo , Receptor Cannabinoide CB1/agonistas , Subfamilia B de Transportador de Casetes de Unión a ATP/genética , Subfamilia B de Transportador de Casetes de Unión a ATP/metabolismo , Subfamilia B de Transportador de Casetes de Unión a ATP/deficiencia , Cirrosis Hepática/patología , Cirrosis Hepática/metabolismo , Cirrosis Hepática/inducido químicamente , Cirrosis Hepática/tratamiento farmacológico , Cirrosis Hepática/genética , Hígado/efectos de los fármacos , Hígado/patología , Hígado/metabolismo , Masculino , Ratones Noqueados , Ácidos y Sales Biliares/metabolismo , Agonismo Inverso de Drogas , Ratones Endogámicos C57BL
3.
Front Psychiatry ; 14: 1203362, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37840804

RESUMEN

Introduction: Patients with alcohol use disorder (AUD) exhibit symptoms such as alcohol withdrawal, depression, and cravings. The gut-immune response may play a significant role in manifesting these specific symptoms associated with AUD. This study examined the role of gut dysfunction, proinflammatory cytokines, and hormones in characterizing AUD symptoms. Methods: Forty-eight AUD patients [men (n = 34) and women (n = 14)] aged 23-63 years were grouped using the Clinical Institute Withdrawal Assessment of Alcohol Scale (CIWA) as clinically significant (CS-CIWA [score > 10] [n = 22]) and a clinically not-significant group (NCS-CIWA [score ≤ 10] [n = 26]). Clinical data (CIWA, 90-day timeline followback [TLFB90], and lifetime drinking history [LTDH]) and blood samples (for testing proinflammatory cytokines, hormones, and markers of intestinal permeability) were analyzed. A subset of 16 AUD patients was assessed upon admission for their craving tendencies related to drug-seeking behavior using the Penn-Alcohol Craving Score (PACS). Results: CS-CIWA group patients exhibited unique and significantly higher levels of adiponectin and interleukin (IL)-6 compared to NCS-CIWA. In the CS group, there were significant and high effects of association for the withdrawal score with gut-immune markers (lipopolysaccharide [LPS], adiponectin, IL-6, and IL-8) and for withdrawal-associated depression with gut-immune markers (scored using MADRS with LPS, soluble cells of differentiation type 14 [sCD14], IL-6, and IL-8). Craving (assessed by PACS, the Penn-Alcohol Craving Scale) was significantly characterized by what could be described as gut dysregulation (LBP [lipopolysaccharide binding protein] and leptin) and candidate proinflammatory (IL-1ß and TNF-α) markers. Such a pathway model describes the heavy drinking phenotype, HDD90 (heavy drinking days past 90 days), with even higher effects (R2 = 0.955, p = 0.006) in the AUD patients, who had higher ratings for cravings (PACS > 5). Discussion: The interaction of gut dysfunction cytokines involved in both inflammation and mediating activity constitutes a novel pathophysiological gut-brain axis for withdrawal symptoms and withdrawal-associated depression and craving symptoms in AUD. AUD patients with reported cravings show a significant characterization of the gut-brain axis response to heavy drinking. Trial registration: ClinicalTrials.gov, identifier: NCT# 00106106.

4.
Alcohol Clin Exp Res (Hoboken) ; 47(9): 1665-1676, 2023 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-37431708

RESUMEN

BACKGROUND: Alcohol-associated liver disease (ALD) leads to millions of deaths worldwide annually. A few potential biomarkers of ALD have been discovered through metabolomic or proteomic analysis. Tryptophan (Trp), one of nine essential amino acids, has been extensively studied and shown to play significant roles in many mammalian physiological processes. However, Trp metabolism changes in ALD are not yet fully understood. Whereas urine is an abundant and non-invasive source for disease biomarker discovery the current study investigated whether the abundance of Trp metabolites in the urine of ALD patients differs from that of healthy subjects. We also examined whether, if present in ALD, changes in urinary Trp metabolites can serve as markers for differentiating between mild/moderate and severe ALD. METHODS: We quantified the concentration of Trp and its metabolites in urine samples of healthy controls (n = 18), patients with mild or moderate alcohol-related liver injury (non-severe ALD; n = 21), and patients with severe alcohol-associated hepatitis (severe AH; n = 25) using both untargeted and targeted metabolomics. RESULTS: Eighteen Trp metabolites were identified and quantified from the untargeted metabolomics data. We developed a targeted metabolomics method to quantify the Trp and its metabolites and quantified 17 metabolites from the human urine samples. The data acquired in the untargeted and targeted platforms agreed and showed that the Trp concentration is not affected by the severity of ALD. However, the abundance of 10 Trp metabolites was correlated with the model for end-stage liver disease (MELD) score, with the abundance of nine metabolites significantly different between the healthy control and ALD patient groups. CONCLUSION: We found that Trp metabolism differs between ALD patients and healthy controls even though the concentration of Trp was not affected. Two Trp metabolites, quinolinic acid and indoxyl sulfate, correlate highly with the severity of ALD.

5.
Nutrients ; 15(9)2023 Apr 26.
Artículo en Inglés | MEDLINE | ID: mdl-37432218

RESUMEN

Fibroblast growth factor 21 (FGF21) is a glucose and lipid metabolic regulator. Recent research revealed that FGF21 was also induced by inflammatory stimuli. Its role in inflammatory bowel disease (IBD) has not been investigated. In this study, an experimental IBD model was established in FGF21 knockout (KO) and wild-type (WT) mice by adding 2.5% (wt/vol) dextran sodium sulfate (DSS) to their drinking water for 7 days. The severity of the colitis and the inflammation of the mouse colon tissues were analyzed. In WT mice, acute DSS treatment induced an elevation in plasma FGF21 and a significant loss of body weight in a time-dependent manner. Surprisingly, the loss of body weight and the severity of the colitis induced by DSS treatment in WT mice were significantly attenuated in FGF21 KO mice. Colon and circulating pro-inflammatory factors were significantly lower in the FGF21 KO mice compared to the WT mice. As shown by BrdU staining, the FGF21 KO mice demonstrated increased colonic epithelial cell proliferation. DSS treatment reduced intestinal Paneth cell and goblet cell numbers in the WT mice, and this effect was attenuated in the FGF21 KO mice. Mechanistically, FGF21 deficiency significantly increased the signal transducer and activator of transcription (STAT)-3 activation in intestinal epithelial cells and increased the expression of IL-22. Further study showed that the expression of suppressor of cytokine signaling-2/3 (SOCS 2/3), a known feedback inhibitor of STAT3, was significantly inhibited in the DSS-treated FGF2 KO mice compared to the WT mice. We conclude that FGF21 deficiency attenuated the severity of DSS-induced acute colitis, which is likely mediated by enhancing the activation of the IL-22-STAT3 signaling pathway in intestinal epithelial cells.


Asunto(s)
Colitis , Enfermedades Inflamatorias del Intestino , Animales , Ratones , Colitis/inducido químicamente , Peso Corporal , Interleucina-22
6.
Adv Clin Chem ; 114: 83-108, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37268335

RESUMEN

Chronic and heavy alcohol consumption is commonly observed in alcohol use disorder (AUD). AUD often leads to alcohol-associated organ injury, including alcohol-associated liver disease (ALD). Approximately 10-20% of patients with AUD progress to ALD. Progression of ALD from the development phase to more advanced states involve the interplay of several pathways, including nutritional alterations. Multiple pathologic processes have been identified in the progression and severity of ALD. However, there are major gaps in the characterization and understanding of the clinical presentation of early-stage ALD as assessed by clinical markers and laboratory measures. Several Institutions and Universities, including the University of Louisville, in collaboration with the National Institutes of Health, have published a series of manuscripts describing early-stage ALD over the past decade. Here, we comprehensively describe early-stage ALD using the liver injury and drinking history markers, and the laboratory biomarkers (with a focus on nutrition status) that are uniquely involved in the development and progression of early-stage ALD.


Asunto(s)
Alcoholismo , Hepatopatías Alcohólicas , Humanos , Estado Nutricional , Hepatopatías Alcohólicas/complicaciones , Consumo de Bebidas Alcohólicas/efectos adversos , Alcoholismo/complicaciones , Biomarcadores
7.
Am J Gastroenterol ; 118(8): 1457-1460, 2023 08 01.
Artículo en Inglés | MEDLINE | ID: mdl-37040544

RESUMEN

INTRODUCTION: We investigated the effect of daily oral Lactobacillus rhamnosus GG (LGG) in reducing liver injury/severity and drinking in patients with alcohol use disorder and moderately severe alcohol-associated hepatitis. METHODS: Forty-six male and female individuals with alcohol use disorder and moderate alcohol-associated hepatitis (12 ≤ model for end-stage liver disease score < 20, aged 21-67 years) received either LGG (n = 24) or placebo (n = 22). Data were collected/assessed at baseline and at 1, 3, and 6 months. RESULTS: LGG treatment was associated with a significant reduction in liver injury after 1 month. Six months of LGG treatment reduced heavy drinking levels to social or abstinence levels. DISCUSSION: LGG treatment was associated with an improvement in both liver injury and drinking.


Asunto(s)
Alcoholismo , Enfermedad Hepática en Estado Terminal , Hepatitis Alcohólica , Lacticaseibacillus rhamnosus , Probióticos , Femenino , Humanos , Masculino , Hepatitis Alcohólica/terapia , Probióticos/uso terapéutico , Índice de Severidad de la Enfermedad
8.
Exp Neurol ; 362: 114325, 2023 04.
Artículo en Inglés | MEDLINE | ID: mdl-36669750

RESUMEN

Radial glial cells (RGCs) play a pivotal role in cerebral cortical development by functioning as a source of new neurons and by supporting the migration of newborn neurons. These functions are primarily dependent on the apical-basolateral structures of radial glial processes. This study aims to investigate the effects of ethanol exposure on the development of radial glial processes and the generation, migration, and transformation of outer radial glial cells (oRGCs). For this purpose, forebrain organoids were developed from human embryonic stem cells. These forebrain organoids contain abundant neural progenitor cells (SOX2+), express high levels of neural epithelial markers ß-catenin and PKCλ, and dorsal forebrain marker PAX6, and display well-organized cortical architectures containing abundant apical and basal RGCs, intermediate progenitors (IPCs), and neurons. Exposure of forebrain organoids to ethanol resulted in a significant increase in apoptosis in Nestin-positive radial glial cells. Ethanol exposure also remarkably decreased the levels of radial glial process-associated proteins, including Nestin, GFAP, and Vimentin, in radial glial cells and distinctly impaired the integrity and morphologies of radial glial processes. In addition, the ethanol-induced impairment of the radial glial processes is associated with decreased migration and proliferation of radial glial cells, reduction in the generation of HOPX+ oRGCs, and the accelerated transformation of oRGCs into astrocytes. These results demonstrate that ethanol exposure can disrupt cerebral cortex development by impairing the formation of radial glial processes and the generation, migration, and transformation of oRGCs.


Asunto(s)
Células Ependimogliales , Células Madre Embrionarias Humanas , Recién Nacido , Humanos , Nestina/metabolismo , Neuroglía/metabolismo , Etanol/farmacología , Células Madre Embrionarias Humanas/metabolismo , Corteza Cerebral/metabolismo
9.
Hepatology ; 77(4): 1164-1180, 2023 04 01.
Artículo en Inglés | MEDLINE | ID: mdl-35689610

RESUMEN

BACKGROUND AND AIMS: Intestinal farnesoid X receptor (FXR) plays a critical role in alcohol-associated liver disease (ALD). We aimed to investigate whether alcohol-induced dysbiosis increased intestinal microRNA194 (miR194) that suppressed Fxr transcription and whether Lactobacillus rhamnosus GG-derived exosome-like nanoparticles (LDNPs) protected against ALD through regulation of intestinal miR194-FXR signaling in mice. APPROACH AND RESULTS: Binge-on-chronic alcohol exposure mouse model was utilized. In addition to the decreased ligand-mediated FXR activation, alcohol feeding repressed intestinal Fxr transcription and increased miR194 expression. This transcriptional suppression of Fxr by miR194 was confirmed in intestinal epithelial Caco-2 cells and mouse enteriods. The alcohol feeding-reduced intestinal FXR activation was further demonstrated by the reduced FXR reporter activity in fecal samples and by the decreased fibroblast growth factor 15 (Fgf15) messenger RNA (mRNA) in intestine and protein levels in the serum, which caused an increased hepatic bile acid synthesis and lipogeneses. We further demonstrated that alcohol feeding increased-miR194 expression was mediated by taurine-upregulated gene 1 (Tug1) through gut microbiota regulation of taurine metabolism. Importantly, 3-day oral administration of LDNPs increased bile salt hydrolase (BSH)-harboring bacteria that decreased conjugated bile acids and increased gut taurine concentration, which upregulated Tug1, leading to a suppression of intestinal miR194 expression and recovery of FXR activation. Activated FXR upregulated FGF15 signaling and subsequently reduced hepatic bile acid synthesis and lipogenesis and attenuated ALD. These protective effects of LDNPs were eliminated in intestinal FxrΔIEC and Fgf15-/- mice. We further showed that miR194 was upregulated, whereas BSH activity and taurine levels were decreased in fecal samples of patients with ALD. CONCLUSIONS: Our results demonstrated that gut microbiota-mediated miR194 regulation contributes to ALD pathogenesis and to the protective effects of LDNPs through modulating intestinal FXR signaling.


Asunto(s)
Hepatopatías Alcohólicas , MicroARNs , Animales , Humanos , Ratones , Ácidos y Sales Biliares/metabolismo , Células CACO-2 , Etanol/farmacología , Hígado/patología , Hepatopatías Alcohólicas/metabolismo , Ratones Endogámicos C57BL , MicroARNs/metabolismo , Receptores Citoplasmáticos y Nucleares/metabolismo , Taurina/farmacología , Nanopartículas
10.
Am J Physiol Gastrointest Liver Physiol ; 324(2): G142-G154, 2023 02 01.
Artículo en Inglés | MEDLINE | ID: mdl-36513601

RESUMEN

Excess alcohol intake causes millions of deaths annually worldwide. Asymptomatic early-stage, alcohol-associated liver disease (ALD) is easily overlooked, and ALD is usually only diagnosed in more advanced stages. We explored the possibility of using polar urine metabolites as biomarkers of ALD for early-stage diagnosis and functional assessment of disease severity by quantifying the abundance of polar metabolites in the urine samples of healthy controls (n = 18), patients with mild or moderate liver injury (n = 21), and patients with severe alcohol-associated hepatitis (n = 25). The polar metabolites in human urine were first analyzed by untargeted metabolomics, showing that 209 urine metabolites are significantly changed in patients, and 17 of these are highly correlated with patients' model for end-stage liver disease (MELD) score. Pathway enrichment analysis reveals that the caffeine metabolic pathway is the most affected in ALD. We then developed a targeted metabolomics method and measured the concentration of caffeine and its metabolites in urine using internal and external standard calibration, respectively. The described method can quantify caffeine and its 14 metabolites in 35 min. The results of targeted metabolomics analysis agree with the results of untargeted metabolomics, showing that 13 caffeine metabolites are significantly decreased in patients. In particular, the concentrations of 1-methylxanthine, paraxanthine, and 5-acetylamino-6-amino-3-methyluracil are markedly decreased with increased disease severity. We suggest that these three metabolites could serve as functional biomarkers for differentiating early-stage ALD from more advanced liver injury.NEW & NOTEWORTHY Our study using both untargeted and targeted metabolomics reveals the caffeine metabolic pathway is dysregulated in ALD. Three caffeine metabolites, 1-methylxanthine, paraxanthine, and 5-acetylamino-6-amino-3-methyluracil, can differentiate the severity of early-stage ALD.


Asunto(s)
Enfermedad Hepática en Estado Terminal , Hepatopatías Alcohólicas , Humanos , Cafeína/metabolismo , Índice de Severidad de la Enfermedad , Hepatopatías Alcohólicas/orina , Metabolómica/métodos , Biomarcadores/orina
11.
Metabolites ; 12(12)2022 Nov 28.
Artículo en Inglés | MEDLINE | ID: mdl-36557225

RESUMEN

Accumulating evidence supports the important role of RNA modifications in liver disease pathogenesis. However, RNA modifications in alcohol-associated liver disease (ALD) have not yet been reported. Modified ribonucleosides/bases are products of RNA degradation; therefore, we investigated whether modified ribonucleosides/bases in human urine and serum are changed and whether these changes are associated with the severity of ALD. Human urine and serum samples from patients with ALD and appropriate controls were collected. Free nucleosides/bases were extracted from these samples and quantified using untargeted and targeted metabolomic approaches. Thirty-nine and forty free nucleosides/bases were respectively detected in human urine and serum samples. Twelve and eleven modified nucleosides are significantly changed in patients' urine and serum (q < 0.05 and fold-change > 20%). The abundance of modified nucleobase and ribonucleoside, 7,9-dimethylguanine in urine and 2-methylthio-N6-threonylcarbamoyladenosine (ms2t6A) in serum are strongly associated with the severity of ALD. Spearman's rank correlation coefficient of these two metabolites with the Model for End-stage Liver Disease (MELD) score are 0.66 and 0.74, respectively. Notably, the abundance changes in these two metabolites are sufficiently large to distinguish severe alcohol-associate hepatitis (AH) from non-severe ALD and non-severe ALD from healthy controls.

12.
Cell Host Microbe ; 30(10): 1417-1434.e8, 2022 10 12.
Artículo en Inglés | MEDLINE | ID: mdl-36150396

RESUMEN

Interactions between the enteric nervous system (ENS) and intestinal epithelium are thought to play a vital role in intestinal homeostasis. How the ENS monitors the frontier with commensal and pathogenic microbes while maintaining epithelial function remains unclear. Here, by combining subdiaphragmatic vagotomy with transcriptomics, chemogenetic strategy, and coculture of enteric neuron-intestinal organoid, we show that enteric neurons expressing VIP shape the α1,2-fucosylation of intestinal epithelial cells (IECs). Mechanistically, neuropeptide VIP activates fut2 expression via the Erk1/2-c-Fos pathway through the VIPR1 receptor on IECs. We further demonstrate that perturbation of enteric neurons leads to gut dysbiosis through α1,2-fucosylation in the steady state and results in increased susceptibility to alcohol-associated liver disease (ALD). This was attributed to an imbalance between beneficial Bifidobacterium and opportunistic pathogenic Enterococcus faecalis in ALD. In addition, Bifidobacterium α1,2-fucosidase may promote Bifidobacterium adhesion to the mucosal surface, which restricts Enterococcus faecalis overgrowth and prevents ALD progression.


Asunto(s)
Sistema Nervioso Entérico , Microbioma Gastrointestinal , Bifidobacterium , Enterococcus faecalis , Epitelio , Homeostasis , Neuronas , alfa-L-Fucosidasa
13.
Int J Mol Sci ; 23(10)2022 May 23.
Artículo en Inglés | MEDLINE | ID: mdl-35628661

RESUMEN

(1) Background: Fibrosis in early-stage alcohol-associated liver disease (ALD) is commonly under-diagnosed in routine clinical practice. This study characterized the liver-injury and cell death response in alcohol use disorder (AUD) patients with ALD who also exhibited fibrosis and assessed the efficacy of standard of care (SOC) treatment in the improvement in liver injury. (2) Methods: Forty-eight heavy-drinking AUD patients aged 21−65 yrs. without clinical manifestations of liver injury were grouped by Fibrosis-4 (FIB-4) score, as negative (Gr.1 < 1.45, n = 21) or positive (Gr.2 ≥ 1.45, n = 27). Patients received 2-weeks (2 w) inpatient SOC. Data on demographics, drinking patterns, liver-injury, immune markers, and liver cell death (K18s) markers were analyzed at baseline (BL) and after 2 w SOC. (3) Results: Lifetime drinking (LTDH, yrs.) and acute heavy drinking (Heavy Drinking Days Past 90 Days [HDD90]) markers were significantly higher in Gr.2 vs. Gr.1. BL ALT, AST, AST:ALT and K18M65 were considerably higher in Gr.2. Dysregulated gut dysfunction and elevated immune activity were evident in Gr.2 characterized by TNF-α, IL-8 and LPS levels. After SOC, Gr.2 showed improvement in AST, ALT, AST/ALT ratio; and in the K18M65, K18M30 and K18M65/M30 ratio vs. Gr.1. The true positivity of BL IL-8 response to predict the improvement in K18M65 to normal levels among Gr.2 patients against those who did not have improvement after 2 w SOC was very high (AUROC = 0.830, p = 0.042). (4) Conclusions: Gut dysfunction, elevated cytokine response and necrotic liver cell death were elevated in AUD patients with early-stage ALD. K18 showed promise as a predictive theragnostic factor to differentiate among the AUD patients with early-stage ALD and baseline fibrosis who had improvement in liver injury against those who did not, by the levels of baseline IL-8.


Asunto(s)
Hepatopatías Alcohólicas , Adulto , Anciano , Biomarcadores/análisis , Humanos , Interleucina-8/metabolismo , Cirrosis Hepática Alcohólica/diagnóstico , Cirrosis Hepática Alcohólica/metabolismo , Cirrosis Hepática Alcohólica/patología , Hepatopatías Alcohólicas/diagnóstico , Hepatopatías Alcohólicas/metabolismo , Hepatopatías Alcohólicas/patología , Persona de Mediana Edad , Adulto Joven
14.
Oncogene ; 41(16): 2287-2302, 2022 04.
Artículo en Inglés | MEDLINE | ID: mdl-35246617

RESUMEN

RORγt is a master regulator of Th17 cells. Despite evidence linking RORγt deficiency/inhibition with metastatic thymic T cell lymphomas, the role of RORγt in lymphoma metabolism is unknown. Chronic alcohol consumption plays a causal role in many human cancers. The risk of T cell lymphoma remains unclear in humans with alcohol use disorders (AUD) after chronic RORγt inhibition. Here we demonstrated that alcohol consumption accelerates RORγt deficiency-induced lymphomagenesis. Loss of RORγt signaling in the thymus promotes aerobic glycolysis and glutaminolysis and increases allocation of glutamine carbon into lipids. Importantly, alcohol consumption results in a shift from aerobic glycolysis to glutaminolysis. Both RORγt deficiency- and alcohol-induced metabolic alterations are mediated by c-Myc, as silencing of c-Myc decreases the effects of alcohol consumption and RORγt deficiency on glutaminolysis, biosynthesis, and tumor growth in vivo. The ethanol-mediated c-Myc activation coupled with increased glutaminolysis underscore the critical role of RORγt-Myc signaling and translation in lymphoma.


Asunto(s)
Alcoholismo , Linfoma , Etanol/toxicidad , Humanos , Linfoma/genética , Miembro 3 del Grupo F de la Subfamilia 1 de Receptores Nucleares/genética , Miembro 3 del Grupo F de la Subfamilia 1 de Receptores Nucleares/metabolismo , Proteínas Proto-Oncogénicas c-myc/genética , Proteínas Proto-Oncogénicas c-myc/metabolismo , Transducción de Señal
15.
Cell Rep ; 38(13): 110560, 2022 03 29.
Artículo en Inglés | MEDLINE | ID: mdl-35354041

RESUMEN

It is not clear how the complex interactions between diet and intestinal immune cells protect the gut from infection. Neutral ceramidase (NcDase) plays a critical role in digesting dietary sphingolipids. We find that NcDase is an essential factor that controls intestinal immune cell dynamics. Mice lacking NcDase have reduced cluster of differentiation (CD) 8αß+ T cells and interferon (IFN)-γ+ T cells and increased macrophages in the intestine and fail to clear bacteria after Citrobacter rodentium infection. Mechanistically, cellular NcDase or extracellular vesicle (EV)-related NcDase generates sphingosine, which promotes macrophage-driven Th1 immunity. Loss of NcDase influences sphingosine-controlled glycolytic metabolism in macrophages, which regulates the bactericidal activity of macrophages. Importantly, administration of dietary sphingomyelin and genetic deletion or pharmacological inhibition of SphK1 can protect against C. rodentium infection. Our findings demonstrate that sphingosine profoundly alters macrophage glycolytic metabolism, leading to intestinal macrophage activation and T cell polarization, which prevent pathogen colonization of the gut.


Asunto(s)
Ceramidasa Neutra , Esfingosina , Animales , Homeostasis , Intestino Delgado/metabolismo , Macrófagos/metabolismo , Ratones , Ceramidasa Neutra/genética , Ceramidasa Neutra/metabolismo , Esfingosina/metabolismo
16.
Toxicol Lett ; 358: 17-26, 2022 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-35038560

RESUMEN

Prenatal ethanol exposure can impair neural crest cell (NCC) development, including NCC survival, differentiation and migration, contributing to the craniofacial dysmorphology in Fetal Alcohol Spectrum Disorders (FASD). Epithelial-mesenchymal transition (EMT) plays an important role in regulating the migration of NCCs. The objective of this study is to determine whether ethanol exposure can suppress NCC migration through inhibiting EMT and whether microRNA-34a (miR-34a) is involved in the ethanol-induced impairment of EMT in NCCs. We found that exposure to 100 mM ethanol significantly inhibited the migration of NCCs. qRT-PCR and Western Blot analysis revealed that exposure to ethanol robustly reduced the mRNA and protein expression of Snail1, a critical transcriptional factor that has a pivotal role in the regulation of EMT. Ethanol exposure also significantly increased the mRNA expression of the Snail1 target gene E-cadherin1 and inhibited EMT in NCCs. We also found that exposure to ethanol significantly elevated the expression of miR-34a that targets Snail1 in NCCs. In addition, down-regulation of miR-34a prevented ethanol-induced repression of Snail1 and diminished ethanol-induced upregulation of Snail1 target gene E-cadherin1 in NCCs. Inhibition of miR-34a restored EMT and prevented ethanol-induced inhibition of NCC migration in vitro and in zebrafish embryos in vivo. These results demonstrate that ethanol-induced upregulation of miR-34a contributes to the impairment of NCC migration through suppressing EMT by targeting Snail1.


Asunto(s)
Transición Epitelial-Mesenquimal , MicroARNs , Animales , Movimiento Celular , Transición Epitelial-Mesenquimal/genética , Etanol/toxicidad , MicroARNs/metabolismo , Cresta Neural/metabolismo , ARN Mensajero/genética , Regulación hacia Arriba , Pez Cebra/genética
17.
Cells ; 10(12)2021 11 27.
Artículo en Inglés | MEDLINE | ID: mdl-34943840

RESUMEN

Alcohol consumption and obesity are known risk factors of steatohepatitis. Here, we report that the deficiency of CRAMP (cathelicidin-related antimicrobial peptide-gene name: Camp) is protective against a high-fat diet (HFD) plus acute alcohol (HFDE)-induced liver injury. HFDE markedly induced liver injury and steatosis in WT mice, which were attenuated in Camp-/- mice. Neutrophil infiltration was lessened in the liver of Camp-/- mice. HFDE feeding dramatically increased epididymal white adipose tissue (eWAT) mass and induced adipocyte hypertrophy in WT mice, whereas these effects were attenuated by the deletion of Camp. Furthermore, Camp-/- mice had significantly increased eWAT lipolysis, evidenced by up-regulated expression of lipolytic enzymes, adipose triglyceride lipase (ATGL) and hormone-sensitive lipase (HSL). The depletion of Camp also increased uncoupling protein 1 (UCP1)-dependent thermogenesis in the brown adipose tissue (BAT) of mice. HFDE fed Camp-/- mice had elevated protein levels of fibroblast growth factor 21 (FGF21) in the eWAT, with an increased adiponectin production, which had been shown to alleviate hepatic fat deposition and inflammation. Collectively, we have demonstrated that Camp-/- mice are protected against HFD plus alcohol-induced liver injury and steatosis through FGF21/adiponectin regulation. Targeting CRAMP could be an effective approach for prevention/treatment of high-fat diet plus alcohol consumption-induced steatohepatitis.


Asunto(s)
Adiponectina/metabolismo , Catelicidinas/deficiencia , Dieta Alta en Grasa/efectos adversos , Etanol/efectos adversos , Factores de Crecimiento de Fibroblastos/metabolismo , Hígado/lesiones , Hígado/metabolismo , Adipocitos/patología , Tejido Adiposo/patología , Tejido Adiposo Pardo/patología , Tejido Adiposo Blanco/patología , Animales , Catelicidinas/metabolismo , Ácidos Grasos/metabolismo , Hígado Graso/complicaciones , Conducta Alimentaria , Hipertrofia , Inflamación/patología , Lipólisis , Hígado/patología , Masculino , Ratones , Aumento de Peso
18.
Clin Exp Pharmacol ; 11(Suppl 7)2021.
Artículo en Inglés | MEDLINE | ID: mdl-34522469

RESUMEN

BACKGROUND: Hyperuricemia has been reported in liver injury; however its role in the early stage of Alcohol-associated Liver Disease (ALD) has not been examined yet. This study investigated the role of Serum Uric Acid (SUA) in alcohol-related liver disease, gut barrier dysfunction, and inflammation activity. This study also evaluated the efficacy of abstinence, treatment with thiamine and medical management to alleviate hyperuricemia. METHODS: 48 heavy drinking Alcohol Use Disorder (AUD) patients (34 males [M]/14 females [F]) participated in this study. Patients were grouped by serum Alanine Aminotransferase (ALT) levels as group 1 (ALT ≤ 40 U/L, 7M/8F) and group 2 (ALT>41U/L, 27M/6F). All patients received open label thiamine 200 mg daily dose. Demographics, drinking history (using Lifetime Drinking History [LTDH], and Timeline Follow Back [TLFB] for the past 90 days) reports were collected at baseline. Baseline and three-week assessments for SUA, biomarkers of liver injury, endotoxemia and inflammation were evaluated. RESULTS: 22 out of 48 AUD patients reported hyperuricemia, primarily in males. SUA was significantly associated with ALT in each group (in group 2, when covaried with HDD90). SUA was also significantly associated with gut barrier dysfunction markers, LBP and LPS, in group 2, SUA and LBP predicted IL-1ß significantly in group 2. Uric acid along with IL-1ß and HDD90 significantly predicted necrotic type of hepatocyte cell death in group 2. Post-treatment SUA dropped across both the groups, significantly in females; adverse effects of drinking, cytokine and uric acid interaction on liver cell death also decreased in group 2. In vitro experiments validated the efficacy of thiamine on hepatocytic uric acid production in alcohol sensitization. CONCLUSION: Uric acid, a metabolic risk signal, was likely involved in the interaction of proinflammatory activity with heavy drinking markers at early-stage ALD. Three-week inpatient medical management, along with treatment with thiamine, seems to alleviate baseline hyperuricemia and necrotic type of hepatocytic cell death in AUD patients with liver injury.

19.
Gut Microbes ; 13(1): 1946367, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34369304

RESUMEN

Emerging research evidence has established the critical role of the gut-liver axis in the development of alcohol-associated liver disease (ALD). The present study employed 16S rRNA gene and whole genome shotgun (WGS) metagenomic analysis in combination with a revised microbial dataset to comprehensively detail the butyrate-producing microbial communities and the associated butyrate metabolic pathways affected by chronic ethanol feeding. Specifically, the data demonstrated that a decrease in several butyrate-producing bacterial genera belonging to distinct families within the Firmicutes phyla was a significant component of ethanol-induced dysbiosis. WGS analysis of total bacterial genomes encompassing butyrate synthesizing pathways provided the functional characteristics of the microbiome associated with butyrate synthesis. The data revealed that in control mice microbiome, the acetyl-coenzyme A (CoA) butyrate synthesizing pathway was the most prevalent and was significantly and maximally decreased by chronic ethanol feeding. Further WGS analysis i) validated the ethanol-induced decrease in the acetyl-CoA pathway by identifying the decrease in two critical genes but - (butyryl-CoA: acetate CoA transferase) and buk - (butyrate kinase) that encode the terminal condensing enzymes required for converting butyryl-CoA to butyrate and ii) detection of specific taxa of butyrate-producing bacteria containing but and buk genes. Notably, the administration of tributyrin (Tb) - a butyrate prodrug - significantly prevented ethanol-induced decrease in butyrate-producing bacteria, hepatic steatosis, inflammation, and injury. Taken together, our findings strongly suggest that the loss of butyrate-producing bacteria using the acetyl-CoA pathway is a significant pathogenic feature of ethanol-induced microbial dysbiosis and ALD and can be targeted for therapy.


Asunto(s)
Butiratos/metabolismo , Enfermedad Hepática Inducida por Sustancias y Drogas/etiología , Enfermedad Hepática Inducida por Sustancias y Drogas/fisiopatología , Coenzima A Transferasas/metabolismo , Disbiosis/inducido químicamente , Etanol/metabolismo , Microbioma Gastrointestinal/efectos de los fármacos , Ruminococcus/metabolismo , Animales , Modelos Animales de Enfermedad , Disbiosis/fisiopatología , Humanos , Redes y Vías Metabólicas , Ratones
20.
iScience ; 24(6): 102511, 2021 Jun 25.
Artículo en Inglés | MEDLINE | ID: mdl-34142028

RESUMEN

Diet and bile play critical roles in shaping gut microbiota, but the molecular mechanism underlying interplay with intestinal microbiota is unclear. Here, we showed that lemon-derived exosome-like nanoparticles (LELNs) enhance lactobacilli toleration to bile. To decipher the mechanism, we used Lactobacillus rhamnosus GG (LGG) as proof of concept to show that LELNs enhance LGG bile resistance via limiting production of Msp1 and Msp3, resulting in decrease of bile accessibility to cell membrane. Furthermore, we found that decline of Msps protein levels was regulated through specific tRNAser UCC and tRNAser UCG decay. We identified RNase P, an essential housekeeping endonuclease, being responsible for LELNs-induced tRNAser UCC and tRNAser UCG decay. We further identified galacturonic acid-enriched pectin-type polysaccharide as the active factor in LELNs to increase bile resistance and downregulate tRNAser UCC and tRNAser UCG level in the LGG. Our study demonstrates a tRNA-based gene expression regulation mechanism among lactobacilli to increase bile resistance.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...