Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 92
Filtrar
1.
J Agric Food Chem ; 2024 May 10.
Artículo en Inglés | MEDLINE | ID: mdl-38728234

RESUMEN

This study delved into the relationship between umami taste sensitivity (UTS) and variations in the salivary proteome among 12 healthy nonsmokers utilizing 4D data-independent acquisition-based proteomics. By assessing UTS through monosodium l-glutamate (MSG) detection thresholds, we discovered notable differences: individuals with high UTS detected umami at significantly lower MSG concentrations (0.20 ± 0.12 mM) compared to their low UTS counterparts (2.51 ± 1.21 mM). Both groups showed an upregulation of the S100A1 protein under MSG stimulation, indicating a potent biochemical response to umami stimuli. The high UTS group exhibited enhanced metabolic pathways including those for amino acid, lipid, and organic acid biosynthesis, essential for maintaining taste receptor functionality and enhancing signal transduction. This group also demonstrated increased activity in cytochrome P450 enzymes and ribonucleoprotein complexes, suggesting a readiness to manage metabolic challenges and optimize umami perception. In contrast, the low UTS group showed adaptive mechanisms, possibly through modulation of receptor availability and function, with an upregulation of structural and ribosomal proteins that may support taste receptor production and turnover. These findings suggest that varying biological mechanisms underpin differences in umami perception, which could significantly influence dietary preferences and nutritional outcomes, highlighting the intricate interplay of genetic, physiological, and metabolic factors in taste sensitivity.

2.
Forensic Sci Int Genet ; 71: 103050, 2024 Apr 21.
Artículo en Inglés | MEDLINE | ID: mdl-38703560

RESUMEN

Age prediction is an important aspect of forensic science that offers valuable insight into identification. In recent years, extensive studies have been conducted on age prediction based on DNA methylation, and numerous studies have demonstrated that DNA methylation is a reliable biomarker for age prediction. However, almost all studies on age prediction based on DNA methylation have focused on age-related CpG sites in autosomes, which are concentrated on single-source DNA samples. Mixed samples, especially male-female mixed samples, are common in forensic casework. The application of Y-STRs and Y-SNPs can provide clues for the genetic typing of male individuals in male-female mixtures, but they cannot provide the age information of male individuals. Studies on Y-chromosome DNA methylation can address this issue. In this study, we identified five age-related CpG sites on the Y chromosome (Y-CpGs) and developed a male-specific age prediction model using pyrosequencing combined with a support vector machine algorithm. The mean absolute deviation of the model was 5.50 years in the training set and 6.74 years in the testing set. When we used a male blood sample to predict age, the deviation between the predicted and chronological age was 1.18 years. Then, we mixed the genomic DNA of the male and a female at ratios of 1:1, 1:5, 1:10, and 1:50, the range of deviation between the predicted and chronological age of the male in the mixture was 1.16-1.74 years. In addition, there was no significant difference between the methylation values of bloodstains and blood in the same sample, which indicates that our model is also suitable for bloodstain samples. Overall, our results show that age prediction using DNA methylation of the Y chromosome has potential applications in forensic science and can be of great help in predicting the age of males in male-female mixtures. Furthermore, this work lays the foundation for future research on age-related applications of Y-CpGs.

3.
J Agric Food Chem ; 72(15): 8715-8730, 2024 Apr 17.
Artículo en Inglés | MEDLINE | ID: mdl-38564531

RESUMEN

Wuyi Rock tea, specifically Shuixian and Rougui, exhibits distinct sensory characteristics. In this study, we investigated the sensory and metabolite differences between Shuixian and Rougui. Quantitative description analysis revealed that Rougui exhibited higher intensity in bitter, thick, harsh, and numb tastes, while Shuixian had stronger salty and umami tastes. Nontargeted metabolomics identified 151 compounds with 66 compounds identified as key differential metabolites responsible for metabolic discrimination. Most of the catechins and flavonoids were enriched in Rougui tea, while epigallocatechin-3,3'-di-O-gallate, epigallocatechin-3,5-di-O-gallate, gallocatechin-3,5-di-O-gallate, isovitexin, and theaflavanoside I were enriched in Shuixian tea. Catechins, kaempferol, quercetin, and myricetin derivatives were positively correlated with bitter taste and numb sensation. Sour taste was positively correlated to organic acids. Amino acids potentially contributed to salty and umami tastes. These results provide further insights into the taste characteristics and the relationship between taste attributes and specific metabolites in Wuyi Rock tea.


Asunto(s)
Catequina , Gusto , Té/química , Cromatografía Líquida con Espectrometría de Masas , Cromatografía Liquida , Espectrometría de Masas en Tándem , Metabolómica/métodos
4.
Anal Chem ; 96(18): 7289-7296, 2024 May 07.
Artículo en Inglés | MEDLINE | ID: mdl-38666489

RESUMEN

Quantitative glycosylation analysis serves as an effective tool for detecting changes in glycosylation patterns in cancer and various diseases. However, compared with N-glycans, O-glycans present challenges in both qualitative and quantitative mass spectrometry analysis due to their low abundance, ease of peeling, lack of a universal enzyme, and difficult accessibility. To address this challenge, we developed O-GlycoIsoQuant, a novel O-glycome quantitative approach utilizing superbase release and isotopic Girard's P labeling. This method facilitates rapid and efficient nonreducing ß-elimination to dissociate O-glycans from proteins using the organic superbase, 1,8-diazabicyclo[5.4.0]undec-7-ene (DBU), combined with light and heavy isotopic Girard's reagent P (GP) labeling for relative quantification of O-glycans by mass spectrometry. Employing this method, labeled O-glycans exhibit a double peak with a mass difference of 5 Da, suitable for stable relative quantification. The O-GlycoIsoQuant method is characterized by its high labeling efficiency, excellent reproducibility (CV < 20%), and good linearity (R2 > 0.99), across a dynamic range spanning a 100-fold range. This method was applied to various complex sample types, including human serum, porcine spermatozoa, human saliva, and urinary extracellular vesicles, detecting 33, 39, 49, and 37 O-glycans, respectively, thereby demonstrating its broad applicability.


Asunto(s)
Glicómica , Marcaje Isotópico , Polisacáridos , Polisacáridos/análisis , Polisacáridos/química , Polisacáridos/metabolismo , Humanos , Glicómica/métodos , Animales , Glicosilación , Masculino , Espectrometría de Masas
5.
Mater Today Bio ; 25: 101015, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38500557

RESUMEN

The process of bone regeneration is intricately regulated by various cytokines at distinct stages. The establishment of early and efficient vascularization, along with the maintenance of a sustained osteoinductive microenvironment, plays a crucial role in the successful utilization of bone repair materials. This study aimed to develop a composite hydrogel that would facilitate the creation of an osteogenic microenvironment for bone repair. This was achieved by incorporating an early rapid release of VEGF and a sustained slow release of BMP-2. Herein, the Schiff base was formed between VEGF and the composite hydrogel, and VEGF could be rapidly released to promote vascularization in response to the early acidic bone injury microenvironment. Furthermore, the encapsulation of BMP-2 within mesoporous silica nanoparticles enabled a controlled and sustained release, thereby facilitating the process of bone repair. Our developed composite hydrogel released more than 80% of VEGF and BMP-2 in the acidic medium, which was significantly higher than that in the neutral medium (about 60%). Moreover, the composite hydrogel demonstrated a significant improvement in the migratory capacity and tube formation ability of human umbilical vein endothelial cells (HUVECs). Furthermore, the composite hydrogel exhibited an augmented ability for osteogenesis, as confirmed by the utilization of ALP staining, alizarin red staining, and the upregulation of osteogenesis-related genes. Notably, the composite hydrogel displayed substantial osteoinductive properties, compared with other groups, the skull defect in the composite hydrogels combined with BMP-2 and VEGF was full of new bone, basically completely repaired, and the BV/TV value was greater than 80%. The outcomes of animal experiments demonstrated that the composite hydrogel effectively promoted bone regeneration in cranial defects of rats by leveraging the synergistic effect of an early rapid release of VEGF and a sustained slow release of BMP-2, thereby facilitating vascularized bone regeneration. In conclusion, our composite hydrogel has demonstrated promising potential for vascularized bone repair through the enhancement of angiogenesis and osteogenic microenvironment.

6.
Plant Dis ; 2024 Mar 20.
Artículo en Inglés | MEDLINE | ID: mdl-38506908

RESUMEN

Lotus (Nelumbo nucifera Gaertn.) is a widely cultivated plant in China, and the fruit lotus variety has a high economic value attributed to the exquisite flavor of its fresh seeds. During the summer of 2023, an unidentified blight was observed affecting lotus seedpods in Jiande City, Zhejiang province, with approximately 65% of seedpods impacted in a 130-hectare area. The initial symptoms included dark purple spots on the lotus seedpod surface, which gradually expanded over time. After 5 to 7 days, the entire seedpod turned black, withering, and rendering the lotus seeds inedible. To identify the causal agent, tissues from symptomatic seedpods were excised and disinfected in 75% ethanol for 60 s, and washed twice in sterile distilled water. The disinfected symptomatic tissues (5 × 5 mm) were plated on potato dextrose agar (PDA), incubated at 25 ℃, transferred hyphal tips to obtain pure isolates after 3 days. Fungal colonies exhibiting Botryosphaeriaceae morphology were isolated from 33% of the samples (n = 15). Pure cultures were grown on PDA for both morphological and molecular identification. The colonies displayed a white aerial mycelium, turning olivaceous grey after 7 days. Pycnidia were produced within 3 weeks on PDA with added sterilized healthy lotus seedpod pieces on the surface. Conidia were hyaline, unicellular, ellipsoidal, 12.65 to 20.72 × 3.92 to 9.38 µm in size (mean 16.67 × 6.24 µm, n = 100). To determine the fungal species, genomic DNA was extracted from one representative isolate (ZJUP1112-1), to amplify four gene loci through polymerase chain reactions (PCR): rDNA internal transcribed spacer (ITS) with primers ITS1/ITS4, rDNA large subunit (LSU) with LR0R/LR5, the translation elongation factor 1-alpha gene (tef1) with EF1-728F/EF1-986R, and ß-tubulin gene (tub2) with Bt2a/Bt2b. The PCR products were Sanger sequenced in Zhejiang Shangya biotechnology co., LTD, and the resulting sequences were assembled and deposited in GenBank (ITS: OR740546; LSU: OR740547; tef1: OR776996; tub2: OR776997). BLAST searches indicated the highest nucleotide sequence identity with the reference strains of Neofusicoccum parvum CMW 9081 (ITS: 98.8%, AY236943; LSU: 100%, AY928045; tef1: 99.6%, AY236888; tub2: 99.3%, AY236917). Multi-locus phylogenetic analyses revealed that isolate ZJUP1112-1 formed a highly supported clade with N. parvum. Pathogenicity tests were performed on healthy lotus seedpods using mycelial plugs (5 mm diameter) from actively growing colonies of ZJUP1112-1 that were placed onto the front and side of the seedpods (6 each). Controls received PDA plugs. Treated seedpods were wrapped with parafilm and incubated at 25 ℃ and the experiment was repeated three times. After 5 days, dark purple lesions were observed on the inoculated seedpods, whereas controls remained symptomless. The same isolate was recovered from the margin of resulting lesions and confirmed by morphology, thus fulfilling Koch's postulates. N. parvum is a polyphagous pathogen causing blights and fruit rot on multiple economically important fruit crops, such as cacao (Puig et al. 2019), walnut (Chen et al. 2019), pistachio (Lopez-Moral et al. 2020), chestnut (Seddaiu et al. 2021), blueberry (Spetik et al. 2023) and mango (Polizzi et al. 2022), among others. To the best of our knowledge, this is the first report of N. parvum causing seedpod blight on lotus seedpods in China, which contributes to a better understanding of the pathogens affecting this plant species in China.

7.
J Agric Food Chem ; 72(15): 8760-8773, 2024 Apr 17.
Artículo en Inglés | MEDLINE | ID: mdl-38536213

RESUMEN

Roasting is pivotal for enhancing the flavor of Wuyi rock tea (WRT). A study investigated a novel compound that enhances the umami taste of WRT. Metabolomics of Shuixian tea (SXT) and Rougui tea (RGT) under light roasting (LR), medium roasting (MR), and heavy roasting (HR) revealed significant differences in nonvolatiles compounds. Compared LR reducing sugars and amino acids notably decreased in MR and HR, with l-alanine declining by 69%. Taste-guided fractionation identified fraction II-B as having high umami and sweet intensities. A surprising taste enhancer, N-(1-carboxyethyl)-6-(hydroxymethyl) pyridinium-3-ol (alapyridaine), was discovered and identified. It formed via the Maillard reaction, positively correlated with roasting in SXT and RGT. Alapyridaine levels were highest in SXT among the five oolong teas. Roasting tea with glucose increased alapyridaine levels, while EGCG inhibited its formation. HR-WRT exhibited enhanced umami and sweet taste, highlighting alapyridaine's impact on WRT's flavor profile. The formation of alapyridaine during the roasting process provides new insights into the umami and sweet perception of oolong tea.


Asunto(s)
Alanina/análogos & derivados , Reacción de Maillard , Piridinas , Gusto , Alanina/química ,
8.
Anal Chem ; 96(13): 5125-5133, 2024 Apr 02.
Artículo en Inglés | MEDLINE | ID: mdl-38502245

RESUMEN

Protein modification by lipid-derived electrophiles (LDEs) is associated with various signaling pathways. Among these LDEs, 4-hydroxy-2-nonenal (HNE) is the most toxic, and protein modified with HNE has been linked to various diseases, including Alzheimer's and Parkinson's. However, due to their low abundance, in-depth profiling of HNE modifications still presents challenges. This study introduces a novel strategy utilizing reversible thiazolidine chemistry to selectively capture HNE-modified proteins and a palladium-mediated cleavage reaction to release them. Thousands of HNE-modified sites in different cell lines were identified. Combined with ABPP, we discovered a set of HNE-sensitive sites that offer a new tool for studying LDE modifications in proteomes.


Asunto(s)
Aldehídos , Procesamiento Proteico-Postraduccional , Tiazolidinas , Aldehídos/metabolismo , Proteoma/metabolismo , Peroxidación de Lípido
9.
J Agric Food Chem ; 72(14): 8126-8139, 2024 Apr 10.
Artículo en Inglés | MEDLINE | ID: mdl-38551387

RESUMEN

A novel ß-primeverosidase-like enzyme, originating from the hypocotyl of soybeans, was isolated and characterized. This enzyme, with an estimated molecular weight of 44 kDa, was identified as a monomer and exhibited peak activity at 55 °C and pH 5.5. It demonstrated a specific and efficient hydrolysis of 1-octen-3-yl ß-primeveroside (1-octen-3-yl prim) and 3-octanyl ß-primeveroside (3-octanyl prim) but did not act on glucopyranosides. Mn2+ significantly enhanced its activity, while Zn2+, Cu2+, and Hg2+ exerted inhibitory effects. Kinetic analysis revealed a higher hydrolytic capacity toward 1-octen-3-yl prim. Partial amino acid sequences were determined and the N-terminal amino acid sequence was determined to be AIVAYAL ALSKRAIAAQ. The binding energy and binding free energy between the ß-primeverosidase enzyme and its substrates were observed to be higher than that of ß-glucosidase, thus validating its superior hydrolysis efficiency. Hydrogen bonds and hydrophobic interactions were the main types of interactions between ß-primeverosidase enzyme and 1-octen-3-yl prim and 3-octanyl prim, involving amino acid residues such as GLU-470, TRP-463, GLU-416, TRP-471, GLN-53, and GLN-477 (hydrogen bonds) and PHE-389, TYR-345, LEU-216, and TYR-275 (hydrophobic interactions). This study contributes to the application of a ß-primeverosidase-like enzyme in improving the release efficiency of glycosidically conjugated flavor substances.


Asunto(s)
Glycine max , Hipocótilo , Hipocótilo/metabolismo , Cinética , Glicósido Hidrolasas/metabolismo
10.
Nanomaterials (Basel) ; 14(3)2024 Feb 03.
Artículo en Inglés | MEDLINE | ID: mdl-38334579

RESUMEN

Micro-LED arrays exhibit high brightness, a long lifespan, low power consumption, and a fast response speed. In this paper, we have proposed a series-biased micro-LED array by using a nitride layer with multi-quantum wells epitaxial on sapphire substrate. The III-nitride multiple quantum wells serving as the micro-LED active material enable both luminescence and detection functionalities. The micro-LED array combines lighting, detection, and communication capabilities. We have conducted a thorough analysis of the micro-LED array's optoelectronic features in both lighting and detection modes. We also explore visible light communication performance across different arrangements of single micro-LED devices within the series-biased array. Our research achieves 720p video transmission via visible light communication using the micro-LED array, supporting a communication rate of up to 10 Mbps. Our contributions encompass the successful integration of lighting and detection functions and a comprehensive assessment of optoelectronic and communication performance. This study highlights the multifunctional micro-LED array's potential as a transceiver terminal in visible light communication systems, expanding its applications from smart lighting to visible light communication and photonic integrated chips. These innovations enhance our understanding of micro-LED technology and its versatile applications.

11.
Environ Sci Pollut Res Int ; 31(13): 20246-20257, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38372921

RESUMEN

An effective way to reduce herbicide quantity is to use adjuvants in order to optimize the amount of herbicide and improve its control efficiency. In order to screen for efficient herbicide tank-mix adjuvants, improve the control of weeds in maize fields, reduce the amount of effective ingredients, and improve the adsorption and digestion behavior of herbicides in soil, this study evaluated the synergistic effects and soil behavior of four types of tank-mix adjuvants combined with herbicides. Different types of adjuvants can enhance herbicide production. Surface tension was significantly reduced by 13% after the pesticide solution was applied with AgroSpred™ Prime. The contact angle with the foliar surface was significantly reduced and solution wettability improved using Atp Lus 245-LQ-(TH). The permeability of topramezone and atrazine in leaves of Amaranthus retroflexus L. and Digitaria sanguinalis (L.) Scop. was increased by 22-96% after adding either tank-mix adjuvant. The solution drying time and maximum retention on leaves were not affected by the tank-mix adjuvants. Ethyl and methylated vegetable oils can reduce the adsorption of topramezone in the soil, thus reducing its half-life in soil. The tank-mix adjuvants had no significant effect on soil dissipation or adsorption of atrazine. AgroSpred™ Prime and Atp Lus 245-LQ-(TH) have the best synergistic effect on topramezone and atrazine in the control of A. retroflexus L. and D. sanguinalis (L.) Scop. in maize fields.


Asunto(s)
Atrazina , Herbicidas , Pirazoles , Herbicidas/análisis , Adyuvantes Inmunológicos , Suelo , Zea mays , Adenosina Trifosfato
12.
Chin J Nat Med ; 22(2): 137-145, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38342566

RESUMEN

Excessive oxidative stress impairs cartilage matrix metabolism balance, significantly contributing to osteoarthritis (OA) development. Celastrol (CSL), a drug derived from Tripterygium wilfordii, has recognized applications in the treatment of cancer and immune system disorders, yet its antioxidative stress mechanisms in OA remain underexplored. This study aimed to substantiate CSL's chondroprotective effects and unravel its underlying mechanisms. We investigated CSL's impact on chondrocytes under both normal and inflammatory conditions. In vitro, CSL mitigated interleukin (IL)-1ß-induced activation of proteinases and promoted cartilage extracellular matrix (ECM) synthesis. In vivo, intra-articular injection of CSL ameliorated cartilage degeneration and mitigated subchondral bone lesions in OA mice. Mechanistically, it was found that inhibiting nuclear factor erythroid 2-related factor 2 (NRF2) abrogated CSL-mediated antioxidative functions and exacerbated the progression of OA. This study is the first to elucidate the role of CSL in the treatment of OA through the activation of NRF2, offering a novel therapeutic avenue for arthritis therapy.


Asunto(s)
Factor 2 Relacionado con NF-E2 , Osteoartritis , Ratones , Animales , Factor 2 Relacionado con NF-E2/genética , Factor 2 Relacionado con NF-E2/metabolismo , Antioxidantes/farmacología , Antioxidantes/metabolismo , Osteoartritis/tratamiento farmacológico , Osteoartritis/metabolismo , Osteoartritis/patología , Triterpenos Pentacíclicos/farmacología , Triterpenos Pentacíclicos/metabolismo , Condrocitos , Interleucina-1beta
13.
Plant Dis ; 2024 Feb 22.
Artículo en Inglés | MEDLINE | ID: mdl-38386298

RESUMEN

In June 2023, a sudden outbreak root rot and vine decline symptoms was observed during a watermelon (Citrullus lanatus T.) variety demonstration trial located in Taizhou City, Zhejiang Province, China, with an incidence rate ranging from 75% to 100% and an affected area of nearly 2,000 square meters. The disease initially appeared with a rapid and alarming invasion of root rot and vine decline symptoms within watermelon plants. Affected plants exhibited rapid deterioration, showing symptoms of wilting, yellowing and eventual demise, predominantly during the pre-harvest stage. Notably, numerous black, spherical, erumpent perithecia were clearly visible on the watermelon's root epidermis, a characteristic trait of the disease. Symptomatic plant samples were rigorously disinfected with 75% ethanol, and plated on potato dextrose agar medium for incubation at 25°C, successfully isolate two potential strains. These isolates were inoculated in oatmeal agar and incubated in a 25℃ light incubator. After 30 days, mature perithecia, the same as those found on the watermelon's root epidermis, reached a diameter of 500 µm. Each perithecium contained several pear-shaped asci, 56 to 108.5 µm in length and 30.5 to 46.4 µm in width, typically holding 1, rarely 2 ascospores. These characteristics align precisely with the typical strains of Monosporascus cannonballus Pollack and Uecker (1974). Additionally, sequencing the internal transcribed spacer region of ribosomal DNA (ITS) gene (White et al., 1990), large subunit ribosomal RNA (LSU) gene (Rehner and Samuels 1995), and beta-tubulin (TUB) gene (Glass and Donaldson, 1995) were performed. BLAST analysis indicated the highest nucleotide sequence identity with M. cannonballus CBS 586.93 reference sequence (ITS: 100%, JQ771930; TUB: 98.99%, JQ907292). Representative sequences of isolate ZJUP0990-2 from these regions were deposited in GenBank (Accession No.: OR357656 for ITS; OR474500 for LSU; OR365762 for TUB). A multigene phylogenomic analysis (ITS-LSU-TUB) was undertaken to ascertain the exact phylogenetic position of M. cannonballus within the genus Monosporascus. The amalgamation of both morphological and molecular insights consistently reaffirmed the accurate classification of the causative agent as M. cannonballus. To validate the pathogenicity of M. cannonballus, a controlled greenhouse experiment was conducted using watermelon (cv. Nabite) as the subject. Mycelium fragments, harvested from the edge of the colony ZJUP0990-2, were inoculated into oat liquid medium and cultivated under dark conditions at a consistent temperature of 30°C for 7 days. After 20 days, the inoculated plants exhibited root rot and wilting, mirroring the symptoms observed during the field outbreak. In contrast, the control plants did not exhibit any signs of disease. M. cannonballus was successfully re-isolated from the symptomatic roots of the inoculated plants, satisfying Koch's postulates. This experiment was repeated three times. This pathogenic fungus has previously been documented as a menace to melons in various regions including Mexico (Chew-Madinaveitia et al., 2012) and Brazil (Sales et al., 2004), as well as watermelons in Brazil (Sales et al., 2010), northern Mexico (Gaytan-Mascorro et al., 2012), and Saudi Arabia (Karlatti et al., 1997). To our knowledge, this is the first reported presence of M. cannonballus on watermelons in China. This new disease poses a serious threat to watermelon production, potentially leading to severe economic losses and impacting food security.

14.
Brain Res Bull ; 208: 110888, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38295883

RESUMEN

Neuroinflammation induced by chronic cerebral hypoperfusion (CCH) plays a crucial role in the pathophysiologic mechanisms of vascular dementia (VD). A growing body of research has found that intestinal microbiota is associated with a variety of central nervous system disorders and that there is a relationship between intestinal microbiota dysbiosis and cognitive dysfunction and inflammatory responses. Baicalein belongs to the class of flavonoids and has a variety of biological functions, including anti-inflammatory, antioxidant and anti-apoptotic. Baicalein has a significant improvement in memory and learning, and can be used as a potential drug for the protection and treatment of central nervous system disorders. Whether baicalein has an ameliorative effect on cognitive impairment in VD, and whether its mechanism is related to the inhibition of inflammatory response and regulation of intestinal microbiota has not been reported. We used bilateral common carotid artery occlusion (BCCAO) to establish a VD rat model. Morris water maze (MWM) test showed that baicalein improved cognitive dysfunction in VD rats. We applied HE staining, immunofluorescence and ELISA to observe that baicalein treatment significantly improved CCH-induced neuronal damage in the CA1 region of the hippocampus, and reduced glial cell activation and release of pro-inflammatory factors. Western blot showed that baicalein inhibited the activation of the TLR4/MyD88/NF-κB signaling pathway in VD rats. We applied 16 S rDNA sequencing to analyze the composition of the intestinal microbiota. The results showed that baicalein modulated the diversity and composition of the intestinal microbiota, and suppressed the relative abundance of inflammation-associated microbiota in VD rats. In conclusion, this study found that baicalein ameliorated cognitive impairment, attenuated hippocampal inflammatory responses, inhibited the TLR4/MyD88/NF-κB signaling pathway, and modulated intestinal microbiota in VD rats.


Asunto(s)
Isquemia Encefálica , Disfunción Cognitiva , Demencia Vascular , Flavanonas , Microbioma Gastrointestinal , Ratas , Animales , Demencia Vascular/tratamiento farmacológico , FN-kappa B/metabolismo , Enfermedades Neuroinflamatorias , Receptor Toll-Like 4/metabolismo , Factor 88 de Diferenciación Mieloide , Disfunción Cognitiva/tratamiento farmacológico , Disfunción Cognitiva/metabolismo , Isquemia Encefálica/metabolismo
15.
Sci Total Environ ; 912: 169055, 2024 Feb 20.
Artículo en Inglés | MEDLINE | ID: mdl-38056663

RESUMEN

Characteristics extraction and anomaly analysis based on frequency spectrum can provide crucial support for source apportionment of PM2.5 pollution. In this study, an effective source apportionment framework combining the Fast Fourier Transform (FFT)- and Continuous Wavelet Transform (CWT)-based spectral analyses and Positive Matrix Factorization (PMF) receptor model is developed for spectrum characteristics extraction and source contribution assessment. The developed framework is applied to Beijing during the winter heating period with 1-h time resolution. The spectrum characteristics of anomaly frequency, location, duration and intensity of PM2.5 pollution can be captured to gain an in-depth understanding of source-oriented information and provide necessary indicators for reliable PMF source apportionment. The combined analysis demonstrates that the secondary inorganic aerosols make relatively high contributions (50.59 %) to PM2.5 pollution during the winter heating period in Beijing, followed by biomass burning, vehicle emission, coal combustion, road dust, industrial process and firework emission sources accounting for 15.01 %, 11.00 %, 10.70 %, 5.31 %, 3.88 %, and 3.51 %, respectively. The source apportionment result suggests that combining frequency spectrum characteristics with source apportionment can provide consistent rationales for understanding the temporal evolution of PM2.5 pollution, identifying the potential source types and quantifying the related contributions.

16.
J Sci Food Agric ; 104(3): 1630-1637, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-37842747

RESUMEN

BACKGROUND: In the contemporary food industry, accurate and rapid differentiation of oolong tea varieties holds paramount importance for traceability and quality control. However, achieving this remains a formidable challenge. This study addresses this lacuna by employing machine learning algorithms - namely support vector machines (SVMs) and convolutional neural networks (CNNs) - alongside computer vision techniques for the automated classification of oolong tea leaves based on visual attributes. RESULTS: An array of 13 distinct characteristics, encompassing color and texture, were identified from five unique oolong tea varieties. To fortify the robustness of the predictive models, data augmentation and image cropping methods were employed. A comparative analysis of SVM- and CNN-based models revealed that the ResNet50 model achieved a high Top-1 accuracy rate exceeding 93%. This robust performance substantiates the efficacy of the implemented methodology for rapid and precise oolong tea classification. CONCLUSION: The study elucidates that the integration of computer vision with machine learning algorithms constitutes a promising, non-invasive approach for the quick and accurate categorization of oolong tea varieties. The findings have significant ramifications for process monitoring, quality assurance, authenticity validation and adulteration detection within the tea industry. © 2023 Society of Chemical Industry.


Asunto(s)
Algoritmos , Redes Neurales de la Computación , Aprendizaje Automático , Máquina de Vectores de Soporte ,
17.
Int J Mol Sci ; 24(23)2023 Nov 24.
Artículo en Inglés | MEDLINE | ID: mdl-38069016

RESUMEN

In order to optimize crop production and mitigate the adverse impacts associated with the utilization of chemical agents, it is necessary to explore new biocontrol agents. Bacillus velezensis has been widely studied as a biocontrol agent because of its efficient and ecofriendly plant disease control mechanisms. This study shows that the strain ZN-S10 effectively reduces the area of leaf spots caused by the pathogen Colletotrichum changpingense ZAFU0163-1, which affects conidia production and germination, inhibits mycelium growth, and induces mycelium deformation. In antifungal experiments with crude extracts, we observed a delay in the cell cycle of conidia, which may be responsible for the inhibition of conidial germination. Among the bioactive metabolites detected through integrated LC-MS- and GC-MS-based untargeted metabolomics, 7-O-Succinyl macrolactin A, telocinobufagin, and surfactin A may be the main antifungal metabolites of strain ZN-S10. The presence of 7-O-Succinyl macrolactin A could explain the cell damage in germ tubes. This is the first report of telocinobufagin detected in B. velezensis. These results are significant for understanding the inhibitory mechanisms employed by B. velezensis and should serve as a reference in the production of biocontrol agents.


Asunto(s)
Antifúngicos , Bacillus , Antifúngicos/farmacología , Antifúngicos/metabolismo , Bacillus/metabolismo , Plantas/metabolismo , Enfermedades de las Plantas/prevención & control , Enfermedades de las Plantas/microbiología
18.
Plants (Basel) ; 12(23)2023 Nov 28.
Artículo en Inglés | MEDLINE | ID: mdl-38068638

RESUMEN

ALBINO3 (ALB3) protein functions in the insertion and assembly of thylakoid membrane protein complexes and plays a critical role for chloroplast development in Arabidopsis. However, the biological function of ALB3 homologs in rice, OsALB3, remains elusive. Here, we identified a rice mutant, yellow leaf and lethal1 (yll1), that displayed yellow leaves and died at the seedling stage. The content of chlorophyll in yll1, compared with wild type, was significantly decreased. Transmission electron microscopy observation shows that the chloroplast of yll1 lacks thylakoid membranes. The causal mutation, which is located in OsALB3, was isolated by Mutmap+ combined with a simple mutation filtering process. Knockout of OsALB3 leads to yellow leaves and seedling lethality, mimicking the phenotype of yll1. OsALB3 is widely expressed and OsALB3 is chloroplast-localized. Moreover, the content of light-harvesting chlorophyll-binding proteins in yll1 is reduced. Together, our study demonstrated the essential role of OsALB3 in chloroplast development and provided clues to the possible conserved molecular function of ALB3 in rice.

19.
Food Chem X ; 20: 100892, 2023 Dec 30.
Artículo en Inglés | MEDLINE | ID: mdl-38144723

RESUMEN

Advances in grinding strategies have been beneficial to eliminating the off-flavor of soymilk and improving the quality soy products. Herein, four grinding processing, dry-blanching grinding (D-BG), wet-blanching grinding (W-BG), wet-anaerobic grinding (W-AG) and traditional grinding (TG) were employed and found to impose a significant impact on off-flavor components, accompanied by changes of hydroperoxides and free radicals. The results showed that all three methods could significantly hinder the formation of C6 aldehydes. C8 Alcohols and (E)-2-heptenal could be removed by D-BG, but lipids in dehulled soybean were prefer to be oxidized during storage, resulting in the accumulation of hydroperoxides and radicals. W-BG and W-AG have higher levels of 1-octen-3-ol, and soaking at an alkaline pH and increasing the number of rinses is beneficial for its removal. Gas chromatography-olfaction-mass spectrometry (GC-O-MS) combined with sensory evaluation showed that off-flavor profile of d-BGS, W-BGS and W-AGS was different. D-BG and W-AG possessed better flavor quality.

20.
J Agric Food Chem ; 71(49): 19324-19332, 2023 Dec 13.
Artículo en Inglés | MEDLINE | ID: mdl-38019973

RESUMEN

The absorption, transport, and subcellular distribution of strobilurin fungicides (azoxystrobin, pyraclostrobin, and trifloxystrobin) have been studied in cucumbers. Under hydroponic laboratory conditions, pyraclostrobin and trifloxystrobin mainly accumulated in cucumber roots whereas azoxystrobin accumulated in cucumber leaves. In the subcellular distribution experiment, azoxystrobin mainly accumulated as a soluble component. Pyraclostrobin and trifloxystrobin accumulated more in the organelles and cell walls. Azoxystrobin and pyraclostrobin enter the root primarily through the apoplast pathway, whereas trifloxystrobin enters the root through the symplastic pathway. Azoxystrobin can be transported in cucumber through anion and cation channels, whereas pyraclostrobin and trifloxystrobin can be transported only through anion channels. This study has great significance in evaluating environmental risks and food safety.


Asunto(s)
Cucumis sativus , Fungicidas Industriales , Estrobilurinas , Fungicidas Industriales/farmacología , Aniones
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA