Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Environ Monit Assess ; 195(8): 1009, 2023 Jul 31.
Artículo en Inglés | MEDLINE | ID: mdl-37522949

RESUMEN

Remediation of cadmium (Cd) pollution is one of the priorities of global environmental governance and accurate detection of Cd content is a key link in remediation of Cd pollution. This study aimed to compare three methods (inductively coupled plasma optical emission spectrometry (ICP-OES), inductively coupled plasma mass spectrometry (ICP-MS), and graphite furnace-atomic absorption spectrometry (GF-AAS)) for the determination of Cd with different tissues of various ramie varieties, and distinguish the advantage and disadvantage of each method. In total, 162 samples of ramie (Boehmeria nivea L.), which is an ideal plant for heavy metal remediation, were detected and the results showed that the three methods were all suitable for the de-termination of Cd content in ramie. ICP-OES and ICP-MS were simpler, faster, and more sensitive than GF-AAS. ICP-MS could be recommended for the determination of samples with various concentrations of Cd. ICP-OES could be used for measurement of samples with > 100 mg/kg Cd content, while GF-AAS was suitable for the detection of samples with very high (> 550 mg/kg) or very low (< 10 mg/kg) Cd content. Overall, considering the accuracy, stability, and the cost of measurement, ICP-MS was the most suitable method for determination of Cd content. This study provides significant reference information for the research in the field of Cd pollution remediation.


Asunto(s)
Boehmeria , Grafito , Cadmio , Conservación de los Recursos Naturales , Política Ambiental , Monitoreo del Ambiente
2.
Front Genet ; 14: 1080909, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36896232

RESUMEN

Gene family, especially MYB as one of the largest transcription factor family in plants, the study of its subfunctional characteristics is a key step in the study of plant gene function. The sequencing of ramie genome provides a good opportunity to study the organization and evolutionary characters of the ramie MYB gene at the whole genome level. In this study, a total of 105 BnGR2R3-MYB genes were identified from ramie genome and subsequently grouped into 35 subfamilies according to phylogeny divergence and sequences similarity. Chromosomal localization, gene structure, synteny analysis, gene duplication, promoter analysis, molecular characteristics and subcellular localization were accomplished using several bioinformatics tools. Collinearity analysis showed that the segmental and tandem duplication events is the dominant form of the gene family expansion, and duplications prominent in distal telomeric regions. Highest syntenic relationship was obtained between BnGR2R3-MYB genes and that of Apocynum venetum (88). Furthermore, transcriptomic data and phylogenetic analysis revealed that BnGMYB60, BnGMYB79/80 and BnGMYB70 might inhibit the biosynthesis of anthocyanins, and UPLC-QTOF-MS data further supported the results. qPCR and phylogenetic analysis revealed that the six genes (BnGMYB9, BnGMYB10, BnGMYB12, BnGMYB28, BnGMYB41, and BnGMYB78) were cadmium stress responsive genes. Especially, the expression of BnGMYB10/12/41 in roots, stems and leaves all increased more than 10-fold after cadmium stress, and in addition they may interact with key genes regulating flavonoid biosynthesis. Thus, a potential link between cadmium stress response and flavonoid synthesis was identified through protein interaction network analysis. The study thus provided significant information into MYB regulatory genes in ramie and may serve as a foundation for genetic enhancement and increased productivity.

3.
Plants (Basel) ; 11(15)2022 Jul 28.
Artículo en Inglés | MEDLINE | ID: mdl-35956439

RESUMEN

Apocynum hendersonii is a traditional medicinal plant used primarily as tea. It has a potential health benefit from its rich bioactive substances. This study investigated the reactivity of solvents of different polarities (ethanol, ethyl acetate, n-hexane, methanol, and water) extracts of the A. hendersonii leaf. The phytochemical composition of the extracts was evaluated using a Fourier Transform Infrared spectrophotometer (FT-IR), Gas Chromatography-Mass Spectrometry (GC-MS), UHPLC-MS, and Higher Performance Liquid Chromatography (HPLC). The result revealed the presence of medicinally important bioactive constituents, including phenols, flavonoids, and polysaccharides. Methanol extracts exhibited the highest flavonoid contents (20.11 ± 0.85 mg QE/g DW) and the second-highest in terms of phenolic (9.25 ± 0.03 mg GAE/g DW) and polysaccharide (119.66 ± 2.65 mg GE/g DW). It also had the highest antioxidant capacity with 60.30 ± 0.52% and 4.60 ± 0.02 µmol Fe2+ per g DW based on a 2,2-diphenyl-1-picrylhydrazyl (DPPH) radical scavenging assay and ferric reducing antioxidant power (FRAP), respectively. Ethanol extract displayed the maximum antibacterial action against Gram-negative and Gram-positive bacteria and the highest inhibition activity against the enzymes tyrosinase and acetylcholinesterase, followed by methanol extract. The principal component analysis revealed a positive correlation between the constituents, bioactivities, and extracts. The overall result showed A. hendersonii as a rich natural source of antimicrobial and antioxidant bioactive compounds and may be used for future applications in pharmaceuticals and food industries.

4.
Front Plant Sci ; 13: 812988, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35432436

RESUMEN

A total of 60 WRKY family genes of ramie were identified in the ramie. The genes were unevenly distributed across 14 chromosomes in the specie and highly concentrated (72%) in the distal telomeric region. Phylogenetic analysis placed these genes into seven distinct subfamilies groups: I, II (a, b, c, d, e), and III, with group IIc containing only the variant of heptapetide sequence (WRKYGKK). Segmental duplication events (41.7%) was found to be the main driver of BnGWRKY evolution. Thirty eight from among the genes showed collinear relationships with WRKY genes from Arabidopsis thaliana, Cannabis sativa, Oryza sativa, and Zea mays. The number and density of stress and hormone responsives cis-acting elements were comparably higher than other elements, with abundant ARE and rare LTR cis-acting elements indicating the long-standing adaptability of ramie to its natural environment. GO and KEGG enrichment analysis of the WRKY target genes revealed their involvement in response to stimuli, immune system processes, transporter protein activity and antioxidant activity. Expression analysis show that most WRKYs were activated by the cadmium stress, more especially the BnGWRKY2, BnGWRKY15, BnGWRKY20, BnGWRKY50 and BnGWRKY58. Combining transcriptome, orthologous gene relationships and qPCR result, we established the possible involvement of BnGWRKY50 and BnGWRKY58 in crosstalk mechanism between secondary cell wall thickening and Cd2+ stress. This provided information into the role of BnGWRKY proteins in ramie secondary wall development and cadmium stress response to, and could serve as basis for improvement of the ramie.

5.
Genomics ; 114(2): 110275, 2022 03.
Artículo en Inglés | MEDLINE | ID: mdl-35108591

RESUMEN

MYB transcription factors are crucial in regulating stress tolerance and expression of major genes involved in flavonoid biosynthesis. The functions of MYBs is well explored in a number of plants, yet no study is reported in Apocynum venetum. We identified a total of 163 MYB candidates, that comprised of 101 (61.96%) R2R3, 6 3R, 1 4R and 55 1R. Syntenic analysis of A. venetum R2R3 (AvMYBs) showed highest orthologous pairs with Vitis vinifera MYBs followed by Arabidopsis thaliana among the four species evaluated. Thirty segmental duplications and 6 tandem duplications were obtained among AvMYB gene pairs signifying their role in the MYB gene family expansion. Nucleotide substitution analysis (Ka/Ks) showed the AvMYBs to be under the influence of strong purifying selection. Expression analysis of selected AvMYBs under low temperature and cadmium stresses resulted in the identification of AvMYB48, AvMYB97, AvMYB8, AvMYB4 as potential stress responsive genes and AvMYB10 and AvMYB11 in addition, proanthocyanidin biosynthesis regulatory genes which is consistent with their annotated homologues in Arabidopsis. Tissue specific expression profile analysis of the AvMYBs further supported the qPCR analysis result. MYBs with higher transcript levels in root, stem and leaf like AvMYB4 for example, was downregulated under the stresses and such with low transcript level such as AvMYB48 which had low transcript in the leaf was upregulated under both stresses. Transcriptome and phylogenetic analyses suggested AvMYB42 as a potential regulator of anthocyanin biosynthesis. Thus, this study provided valuable information on AvR2R3-MYB gene family with respect to stress tolerance and flavonoid biosynthesis.


Asunto(s)
Apocynum , Arabidopsis , Apocynum/genética , Apocynum/metabolismo , Arabidopsis/genética , Arabidopsis/metabolismo , Flavonoides/genética , Regulación de la Expresión Génica de las Plantas , Genes myb , Filogenia , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Factores de Transcripción/metabolismo
6.
BMC Genomics ; 22(1): 684, 2021 Sep 22.
Artículo en Inglés | MEDLINE | ID: mdl-34548018

RESUMEN

BACKGROUND: The bast fiber crop ramie can be used as high-quality forage resources, especially in tropical or subtropical region where there is lack of high-quality protein feed. Hongxuan No.1 (HX_1) is a unique ramie variety with a light reddish brown leaf color, which is obviously different from elite cultivar, Zhongzhu No.1 (ZZ_1, green leaf). While, the regulatory mechanism of color difference or secondary metaboliates synthesis between these two varieties have not been studied. RESULTS: In this study, phenotypic, transcriptomic and metabolomic analysis of HX_1 and ZZ_1 were conducted to elucidate the mechanism of leaf color formation. Chromaticity value and pigment content measuring showed that anthocyanin was the main metabolites imparting the different leaf color phenotype between the two varieties. Based on LC/MS, at least 14 anthocyanins were identified in leaves of HX_1 and ZZ_1, and the HX_1 showed the higher relative content of malvidin-, pelargonidin-,and cyanidin-based anthocyanins. Transcriptome and metabolome co-analysis revealed that the up-regulated expression of flavonoids synthesis gene was positively correlated with total anthocyanins accumulation in ramie leaf, and the differentfially expression of "blue gene" (F3'5'H) and the "red gene" (F3'H) in leaves bring out HX_1 metabolic flow more input into the cyanidin branch. Furthermore, the enrichment of glycosylated modification pathway (UGT and AT) and the expression of flavonoid 3-O-glucosyl transferase (UFGT), anthocyanidin reductase (ANR), in leaves were significantly influenced the diversity of anthocyanins between HX_1 and ZZ_1. CONCLUSIONS: Phenotypic, transcriptomic and metabolomic analysis of HX_1 and ZZ_1 indicated that the expression levels of genes related to anthocyanin metabolism contribute to the color formation of ramie variety. Anthocyanins are important plant secandary metabilates with many physiological functions, the results of this study will deepened our understanding of ramie leaf color formation, and provided basis for molecular breeding of functional forage ramie.


Asunto(s)
Boehmeria , Antocianinas/metabolismo , Color , Perfilación de la Expresión Génica , Regulación de la Expresión Génica de las Plantas , Metaboloma , Hojas de la Planta/genética , Hojas de la Planta/metabolismo , Proteínas de Plantas/genética , Transcriptoma
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...