Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Elife ; 122024 Mar 18.
Artículo en Inglés | MEDLINE | ID: mdl-38497611

RESUMEN

Eukaryotic gene expression is linked to chromatin structure and nucleosome positioning by ATP-dependent chromatin remodelers that establish and maintain nucleosome-depleted regions (NDRs) near transcription start sites. Conserved yeast RSC and ISW2 remodelers exert antagonistic effects on nucleosomes flanking NDRs, but the temporal dynamics of remodeler search, engagement, and directional nucleosome mobilization for promoter accessibility are unknown. Using optical tweezers and two-color single-particle imaging, we investigated the Brownian diffusion of RSC and ISW2 on free DNA and sparse nucleosome arrays. RSC and ISW2 rapidly scan DNA by one-dimensional hopping and sliding, respectively, with dynamic collisions between remodelers followed by recoil or apparent co-diffusion. Static nucleosomes block remodeler diffusion resulting in remodeler recoil or sequestration. Remarkably, both RSC and ISW2 use ATP hydrolysis to translocate mono-nucleosomes processively at ~30 bp/s on extended linear DNA under tension. Processivity and opposing push-pull directionalities of nucleosome translocation shown by RSC and ISW2 shape the distinctive landscape of promoter chromatin.


Asunto(s)
Cromatina , Nucleosomas , Adenosina Trifosfato/metabolismo , Cromatina/metabolismo , ADN/metabolismo , Nucleosomas/genética , Nucleosomas/metabolismo , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , Translocación Genética
2.
bioRxiv ; 2024 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-38293098

RESUMEN

Eukaryotic gene expression is linked to chromatin structure and nucleosome positioning by ATP-dependent chromatin remodelers that establish and maintain nucleosome-depleted regions (NDRs) near transcription start-sites. Conserved yeast RSC and ISW2 remodelers exert antagonistic effects on nucleosomes flanking NDRs, but the temporal dynamics of remodeler search, engagement and directional nucleosome mobilization for promoter accessibility are unknown. Using optical tweezers and 2-color single-particle imaging, we investigated the Brownian diffusion of RSC and ISW2 on free DNA and sparse nucleosome arrays. RSC and ISW2 rapidly scan DNA by one-dimensional hopping and sliding respectively, with dynamic collisions between remodelers followed by recoil or apparent co-diffusion. Static nucleosomes block remodeler diffusion resulting in remodeler recoil or sequestration. Remarkably, both RSC and ISW2 use ATP hydrolysis to translocate mono-nucleosomes processively at ~30 bp/sec on extended linear DNA under tension. Processivity and opposing push-pull directionalities of nucleosome translocation shown by RSC and ISW2 shape the distinctive landscape of promoter chromatin.

3.
bioRxiv ; 2023 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-37502885

RESUMEN

The eukaryotic chromatin landscape plays important roles in DNA metabolism and is characterized by positioned nucleosomes near regulatory DNA, nucleosome-depleted regions and supranucleosomal organization. Nucleosome core histones limit DNA accessibility by structurally blocking half of the DNA surface and altering its topology, but how nucleosomes affect target search by sequence-specific transcription factors (TFs) remains enigmatic. Here, we used multi-color smFRET to investigate how Drosophila GAGA Factor (GAF) locates its targets. On free DNA, GAF rapidly diffuses in 1D to a single cognate motif but escapes after subsecond transient association. Nucleosomes effectively block 1D diffusion into its core, but GAF can bind, with surprisingly prolonged residence, at internal cognate sites by direct association from 3D. Our findings demonstrate the occlusive power of nucleosomes to 1D sliding and reveal that a combination of 1D and 3D diffusion by a zinc finger TF enables efficient target search on chromatin.

4.
Elife ; 112022 07 25.
Artículo en Inglés | MEDLINE | ID: mdl-35876491

RESUMEN

One-dimensional (1D) target search is a well-characterized phenomenon for many DNA-binding proteins but is poorly understood for chromatin remodelers. Herein, we characterize the 1D scanning properties of SWR1, a conserved yeast chromatin remodeler that performs histone exchange on +1 nucleosomes adjacent to a nucleosome-depleted region (NDR) at gene promoters. We demonstrate that SWR1 has a kinetic binding preference for DNA of NDR length as opposed to gene-body linker length DNA. Using single and dual color single-particle tracking on DNA stretched with optical tweezers, we directly observe SWR1 diffusion on DNA. We found that various factors impact SWR1 scanning, including ATP which promotes diffusion through nucleotide binding rather than ATP hydrolysis. A DNA-binding subunit, Swc2, plays an important role in the overall diffusive behavior of the complex, as the subunit in isolation retains similar, although faster, scanning properties as the whole remodeler. ATP-bound SWR1 slides until it encounters a protein roadblock, of which we tested dCas9 and nucleosomes. The median diffusion coefficient, 0.024 µm2/s, in the regime of helical sliding, would mediate rapid encounter of NDR-flanking nucleosomes at length scales found in cellular chromatin.


Asunto(s)
Nucleosomas , Proteínas de Saccharomyces cerevisiae , Adenosina Trifosfatasas/metabolismo , Adenosina Trifosfato/metabolismo , Cromatina/metabolismo , Ensamble y Desensamble de Cromatina , ADN/metabolismo , Histonas/metabolismo , Nucleosomas/metabolismo , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo
5.
Sci Adv ; 8(10): eabj5509, 2022 03 11.
Artículo en Inglés | MEDLINE | ID: mdl-35263135

RESUMEN

Nucleosomal histone H2A is exchanged for its variant H2A.Z by the SWR1 chromatin remodeler, but the mechanism and timing of histone exchange remain unclear. Here, we quantify DNA and histone dynamics during histone exchange in real time using a three-color single-molecule FRET assay. We show that SWR1 operates with timed precision to unwrap DNA with large displacement from one face of the nucleosome, remove H2A-H2B from the same face, and rewrap DNA, all within 2.3 s. This productive DNA unwrapping requires full SWR1 activation and differs from unproductive, smaller-scale DNA unwrapping caused by SWR1 binding alone. On an asymmetrically positioned nucleosome, SWR1 intrinsically senses long-linker DNA to preferentially exchange H2A.Z on the distal face as observed in vivo. The displaced H2A-H2B dimer remains briefly associated with the SWR1-nucleosome complex and is dissociated by histone chaperones. These findings reveal how SWR1 coordinates DNA unwrapping with histone dynamics to rapidly and accurately place H2A.Z at physiological sites on chromatin.


Asunto(s)
Histonas , Proteínas de Saccharomyces cerevisiae , Cromatina , ADN/química , Histonas/metabolismo , Nucleosomas , Proteínas de Saccharomyces cerevisiae/genética
6.
Curr Opin Struct Biol ; 70: 26-33, 2021 10.
Artículo en Inglés | MEDLINE | ID: mdl-33894656

RESUMEN

Single-molecule fluorescence resonance energy transfer (smFRET) is a useful tool for observing the dynamics of protein-nucleic acid interactions. Although most smFRET measurements have used two fluorophores, multicolor smFRET measurements using more than two fluorophores offer more information about how protein-nucleic acid complexes dynamically move, assemble, and disassemble. Multicolor smFRET experiments include three or more fluorophores and at least one donor-acceptor pair. This review highlights how multicolor smFRET is being used to probe the dynamics of three different classes of biochemical processes-protein-DNA interactions, chromatin remodeling, and protein translation.


Asunto(s)
Transferencia Resonante de Energía de Fluorescencia , ARN , ADN , Colorantes Fluorescentes , Nanotecnología
7.
Chem Rev ; 120(1): 36-78, 2020 01 08.
Artículo en Inglés | MEDLINE | ID: mdl-31661246

RESUMEN

Molecular motors are diverse enzymes that transduce chemical energy into mechanical work and, in doing so, perform critical cellular functions such as DNA replication and transcription, DNA supercoiling, intracellular transport, and ATP synthesis. Single-molecule techniques have been extensively used to identify structural intermediates in the reaction cycles of molecular motors and to understand how substeps in energy consumption drive transitions between the intermediates. Here, we review a broad spectrum of single-molecule tools and techniques such as optical and magnetic tweezers, atomic force microscopy (AFM), single-molecule fluorescence resonance energy transfer (smFRET), nanopore tweezers, and hybrid techniques that increase the number of observables. These methods enable the manipulation of individual biomolecules via the application of forces and torques and the observation of dynamic conformational changes in single motor complexes. We also review how these techniques have been applied to study various motors such as helicases, DNA and RNA polymerases, topoisomerases, nucleosome remodelers, and motors involved in the condensation, segregation, and digestion of DNA. In-depth analysis of mechanochemical coupling in molecular motors has made the development of artificially engineered motors possible. We review techniques such as mutagenesis, chemical modifications, and optogenetics that have been used to re-engineer existing molecular motors to have, for instance, altered speed, processivity, or functionality. We also discuss how single-molecule analysis of engineered motors allows us to challenge our fundamental understanding of how molecular motors transduce energy.


Asunto(s)
ADN/química , Proteínas Motoras Moleculares/química , Imagen Individual de Molécula/métodos , Bioingeniería/métodos , ADN Helicasas/química , Transferencia Resonante de Energía de Fluorescencia , Humanos , Microscopía de Fuerza Atómica , Nanotecnología , Conformación de Ácido Nucleico , Pinzas Ópticas
8.
J Biol Chem ; 294(22): 8848-8860, 2019 05 31.
Artículo en Inglés | MEDLINE | ID: mdl-30979724

RESUMEN

In cyanobacterial photoprotection, the orange carotenoid protein (OCP) is photoactivated under excess light conditions and binds to the light-harvesting antenna, triggering the dissipation of captured light energy. In low light, the OCP relaxes to the native state, a process that is accelerated in the presence of fluorescence recovery protein (FRP). Despite the importance of the OCP in photoprotection, the precise mechanism of photoactivation by this protein is not well-understood. Using time-resolved X-ray-mediated in situ hydroxyl radical labeling, we probed real-time solvent accessibility (SA) changes at key OCP residues during photoactivation and relaxation. We observed a biphasic photoactivation process in which carotenoid migration preceded domain dissociation. We also observed a multiphasic relaxation process, with collapsed domain association preceding the final conformational rearrangement of the carotenoid. Using steady-state hydroxyl radical labeling, we identified sites of interaction between the FRP and OCP. In combination, the findings in this study provide molecular-level insights into the factors driving structural changes during OCP-mediated photoprotection in cyanobacteria, and furnish a basis for understanding the physiological relevance of the FRP-mediated relaxation process.


Asunto(s)
Proteínas Bacterianas/metabolismo , Carotenoides/metabolismo , Proteínas Bacterianas/química , Carotenoides/química , Cianobacterias/metabolismo , Radical Hidroxilo/química , Simulación del Acoplamiento Molecular , Estructura Terciaria de Proteína , Rayos X
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...