Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.049
Filtrar
1.
Artículo en Inglés | MEDLINE | ID: mdl-38742391

RESUMEN

Vertical observations of atmospheric pollutants play crucial roles in a comprehensive understanding of the distribution characteristics and transport of atmospheric pollutants. A hexacopter uncrewed aerial vehicle equipped with miniature monitors was employed to measure the vertical distribution of atmospheric pollutants within a height of 1000 m at a rural site in Xi'an, China, in 2021. The concentrations of carbon monoxide (CO) and particulate matter (PM) showed generally decreasing trends with increasing height. The ozone (O3) concentration showed a general increasing trend with height followed by a gradual decreasing trend. Vertical decrements of PM2.5 and CO from 0 to 1000 m were significantly (p < 0.05) lower on observation days during summer (14.0 ± 8.1 µg m-3 and 8.7 ± 6.6 ppb, respectively), compared with those in winter (78.3 ± 14.1 µg m-3 and 34.8 ± 17.3 ppb, respectively). The horizontal transport of PM and CO mostly occurred in the morning and at night during winter observations at an altitude of 400-500 m. During the winter haze, the PM and CO profile concentrations below 500 m increased substantially with the decrease in the height of the thermal inversion layer. Vertical O3 transportation was observed in the afternoon and evening during summer, and a ∼37.7% (11.6 ppb) increase in ground-level O3 was observed in relation to vertical transport from the upper atmosphere. The results provide insights into the vertical distribution and transport of atmospheric pollutants in rural areas near cities.

2.
mBio ; : e0064024, 2024 May 10.
Artículo en Inglés | MEDLINE | ID: mdl-38727246

RESUMEN

Interleukin-18 binding protein (IL-18BP), a natural regulator molecule of the pro-inflammatory cytokine interleukin-18 (IL-18), plays an important role in regulating the expression of the cellular immunity factor interferon-γ (IFN-γ). In a previous RNA-seq analysis of porcine alveolar macrophages (PAM) infected with the TIM and TJ strains of porcine reproductive and respiratory syndrome virus (PRRSV), we unexpectedly found that the mRNA expression of porcine interleukin 18-binding protein (pIL-18BP) in PAM cells infected with the TJM strain was significantly higher than that infected with the TJ strain. Studies have shown that human interleukin-18 binding protein (hIL-18bp) plays an important role in regulating cellular immunity in the course of the disease. However, there is a research gap on pIL-18BP. At the same time, PRRSV infection in pigs triggers weak cellular immune response problems. To explore the expression and the role of pIL-18BP in the cellular immune response induced by PRRSV, we strived to acquire the pIL-18BP gene from PAM or peripheral blood mononuclear cell (PBMC) with RT-PCR and sequencing. Furthermore, pIL-18BP and pIL-18 were both expressed prokaryotically and eukaryotically. The colocalization and interaction based on recombinant pIL-18BP and pIL-18 on cells were confirmed in vitro. Finally, the expression of pIL-18BP, pIL-18, and pIFN-γ was explored in pigs with different PRRSV infection states to interpret the biological function of pIL-18BP in vivo. The results showed there were five shear mutants of pIL-18BP. The mutant with the longest coding region was selected for subsequent functional validation. First, it was demonstrated that TJM-induced pIL-18BP mRNA expression was higher than that of TJ. A direct interaction between pIL-18BP and pIL-18 was confirmed through fluorescence colocalization, bimolecular fluorescent complimentary (BIFC), and co-immunoprecipitation (CO-IP). pIL-18BP also can regulate pIFN-γ mRNA expression. Finally, the expression of pIL-18BP, pIL-18, and pIFN-γ was explored in different PRRSV infection states. Surprisingly, both mRNA and protein expression of pIL-18 were suppressed. These findings fill the gap in understanding the roles played by pIL-18BP in PRRSV infection and provide a foundation for further research.IMPORTANCEPRRSV-infected pigs elicit a weak cellular immune response and the mechanisms of cellular immune regulation induced by PRRSV have not yet been fully elucidated. In this study, we investigated the role of pIL-18BP in PRRSV-induced immune response referring to the regulation of human IL-18BP to human interferon-gamma (hIFN-γ). This is expected to be used as a method to enhance the cellular immune response induced by the PRRSV vaccine. Here, we mined five transcripts of the pIL-18BP gene and demonstrated that it interacts with pIL-18 and regulates pIFN-γ mRNA expression. Surprisingly, we also found that both mRNA and protein expression of pIL-18 were suppressed under different PRRSV strains of infection status. These results have led to a renewed understanding of the roles of pIL-18BP and pIL-18 in cellular immunity induced by PRRSV infection, which has important implications for the prevention and control of PRRS.

3.
Chembiochem ; : e202400229, 2024 May 03.
Artículo en Inglés | MEDLINE | ID: mdl-38700379

RESUMEN

Photodynamic therapy (PDT) is a newly emerged strategy for disease treatment. One challenge of the application of PDT drugs is the side-effect caused by the non-specificity of the photosensitive molecules. Most of the photosensitizers may invade not only the pathogenic cells but also the normal cells. In recent, people tried to use special cargoes to deliver the drugs into target cells. DNA nanoflowers (NFs) are a kind of newly-emerged nanomaterial which constructed through DNA rolling cycle amplification (RCA) reaction. It is reported that the DNA NFs were suitable materials which have been widely applied as nanocargos for drug delivery in cancer chemotherapeutic treatment. In this paper, we have introduced a new multifunctional DNA NF which could be prepared through an one-pot RCA reaction. This proposed DNA NF contained a versatile AS1411 G-quadruplex moiety, which plays key roles not only for specific recognition of cancer cells but also for near-infrared ray based photodynamic therapy when conjugating with a special porphyrin molecule. We demonstrated that the DNA NF showed good selectivity toward cancer cells, leading to highly efficient photo-induced cytotoxicity. Moreover, the in vivo experiment results suggested this DNA NF is a promising nanomaterial for clinical PDT.

4.
Plant Cell Environ ; 2024 May 10.
Artículo en Inglés | MEDLINE | ID: mdl-38725360

RESUMEN

Terrestrial water fluxes are substantially mediated by vegetation, while the distribution, growth, health, and mortality of plants are strongly influenced by the availability of water. These interactions, playing out across multiple spatial and temporal scales, link the disciplines of plant ecophysiology and ecohydrology. Despite this connection, the disciplines have provided complementary, but largely independent, perspectives on the soil-plant-atmosphere continuum since their crystallization as modern scientific disciplines in the late 20th century. This review traces the development of the two disciplines, from their respective origins in engineering and ecology, their largely independent growth and maturation, and the eventual development of common conceptual and quantitative frameworks. This common ground has allowed explicit coupling of the disciplines to better understand plant function. Case studies both illuminate the limitations of the disciplines working in isolation, and reveal the exciting possibilities created by consilience between the disciplines. The histories of the two disciplines suggest opportunities for new advances will arise from sharing methodologies, working across multiple levels of complexity, and leveraging new observational technologies. Practically, these exchanges can be supported by creating shared scientific spaces. This review argues that consilience and collaboration are essential for robust and evidence-based predictions and policy responses under global change.

5.
Artículo en Inglés | MEDLINE | ID: mdl-38604396

RESUMEN

BACKGROUND: The Goutallier classification (GC) is used to assess fatty atrophy in rotator cuff (RC) tears, yet limitations exist. A battery of 3D-magnetic resonance imaging (MRI) volumetric scores (VS) was developed to provide comprehensive characterization of RC pathology. The purposes of this study were to: (1) Describe the correlation between GC and VS for supraspinatus changes in RC tears, (2) Characterize the chronicity of RC tears using the battery of 12 VS measurements, and (3) Compare GC and VS to determine which method most closely corresponds with preoperative patient reported outcome measures (PROMs). METHODS: Preoperative shoulder MRIs were reviewed after arthroscopic RC repair. Preoperative GC stage and Patient-Reported Outcomes Measurement Information System (PROMIS) physical function (PF) and pain interference (PI) scores were collected. The battery of VS included fat infiltration (FIS), muscle size (MSS) and relative volume contribution (RCS) for each RC muscle. Backwards linear regression was performed to compare GC stage with preoperative PROMIS PF/PI to determine which VS measurement most closely correlated with preoperative PROMs. RESULTS: Eighty-two patients underwent RC repair (mean age 55±8.2 years, 63% male, 68% GC stage ≤1). In evaluation of the supraspinatus, there was a moderate positive correlation between GC and FIS (r = 0.459, p < 0.001); strong negative correlations were observed between MSS (r = -0.800, p < 0.001) and RCS (r = -0.745, p < 0.001) when compared to GC. A negligible linear correlation was observed between GC and preoperative PROMIS PF (r = -0.106, p = 0.343) and PI (r = -0.071, p = 0.528). On multivariate analysis, subscapularis MSS (beta > 0, p = 0.064) was a positive predictor, and subscapularis FIS (beta < 0, p = 0.137), teres minor MSS (beta < 0, p = 0.141) and FIS (beta < 0, p = 0.070) were negative predictors of preoperative PF (r = 0.343, p = 0.044); while supraspinatus MSS (beta > 0, p = 0.009) and FIS (beta > 0, p = 0.073), teres minor FIS (beta > 0, p = 0.072) and subscapularis FIS (beta > 0, p = 0.065) were positive predictors of preoperative PI (r = 0.410, p = 0.006). CONCLUSION: Although gold standard in evaluation of RC pathology, GC demonstrated negligible correlation with preoperative functional disability. Alternatively, a battery of 3D VS showed strong correlation with GC through a quantitative, comprehensive evaluation of the RC unit including several moderate predictors of preoperative functional disability.

6.
Adv Mater ; : e2401875, 2024 Apr 10.
Artículo en Inglés | MEDLINE | ID: mdl-38598692

RESUMEN

The practical application of flexible and stretchable electronics is significantly influenced by their thermal and chemical stability. Elastomer substrates and encapsulation, due to their soft polymer chains and high surface-area-to-volume ratio, are particularly susceptible to high temperatures and flame. Excessive heat poses a severe threat of damage and decomposition to these elastomers. By leveraging water as a high enthalpy dissipating agent, here, a hydrogel encapsulation strategy is proposed to enhance the flame retardancy and thermal stability of stretchable electronics. The hydrogel-based encapsulation provides thermal protection against flames for more than 10 s through the evaporation of water. Further, the stretchability and functions automatically recover by absorbing air moisture. The incorporation of hydrogel encapsulation enables stretchable electronics to maintain their functions and perform complex tasks, such as fire saving in soft robotics and integrated electronics sensing. With high enthalpy heat dissipation, encapsulated soft electronic devices are effectively shielded and retain their full functionality. This strategy offers a universal method for flame retardant encapsulation of stretchable electronic devices.

7.
BMC Genomics ; 25(1): 358, 2024 Apr 11.
Artículo en Inglés | MEDLINE | ID: mdl-38605318

RESUMEN

BACKGROUND: Hox gene family is an important transcription factor that regulates cell process, and plays a role in the process of adipocytes differentiation and fat deposition. Previous transcriptome sequencing studies have indicated that the Homeobox A9 gene (HOXA9) is a candidate gene for regulating the process of bovine lipid metabolism, but the function and specific mechanism of action remain unclear. Therefore, this study aims to explore the role of HOXA9 in the proliferation, differentiation and apoptosis of bovine preadipocytes through gain-of-function and lose-of-function. RESULT: It found HOXA9 highly expressed in bovine adipose tissue, and its expression level changed significantly during adipocytes differentiation process. It gave a hint that HOXA9 may be involved in the process of bovine lipid metabolism. The results of HOXA9 gain-of-function experiments indicated that HOXA9 appeared to act as a negative regulator not only in the differentiation but also in the proliferation of bovine preadipocytes, which is mainly reflected that overexpression of HOXA9 down-regulate the mRNA and protein expression level of PPARγ, CEBPα and FABP4 (P < 0.05). The mRNA expression level of CDK1, CDK2, PCNA, CCNA2, CCNB1, CCND1 and CCNE2, as well as the protein expression of CDK2 also significantly decreased. The decrease of lipid droplets content was the main characteristic of the phenotype (P < 0.01), which further supported the evidence that HOXA9 was a negative regulator of preadipocytes differentiation. The decrease of cell proliferation rate and EdU positive rate, as well as the limitation of transition of preadipocytes from G0/G1 phase to S phase also provided evidence for the inhibition of proliferation. Apart from this above, we noted an interesting phenomenon that overexpression of HOXA9 showed in a significant upregulation of both mRNA and protein level of apoptosis markers, accompanied by a significant increase in cell apoptosis rate. These data led us not to refute the fact that HOXA9 played an active regulatory role in apoptosis. HOXA9 loss-of-function experiments, however, yielded the opposite results. Considering that HOXA9 acts as a transcription factor, we predicted its target genes. Dual luciferase reporter assay system indicated that overexpression of HOXA9 inhibits activity of PCNA promoter. CONCLUSION: Taken together, we demonstrated for the first time that HOXA9 played a role as a negative regulatory factor in the differentiation and proliferation of preadipocytes, but played a positive regulatory role in apoptosis, and it may play a regulatory role by targeting PCNA. This study provides basic data for further exploring the regulatory network of intramuscular fat deposition in bovine.


Asunto(s)
Adipocitos , Genes Homeobox , Animales , Bovinos , Adipocitos/metabolismo , Antígeno Nuclear de Célula en Proliferación/genética , Antígeno Nuclear de Célula en Proliferación/metabolismo , Diferenciación Celular/genética , Proliferación Celular , Factores de Transcripción/metabolismo , Apoptosis/genética , ARN Mensajero/metabolismo , Adipogénesis/genética
8.
bioRxiv ; 2024 Apr 03.
Artículo en Inglés | MEDLINE | ID: mdl-38617277

RESUMEN

Optineurin (OPTN) mutations are linked to amyotrophic lateral sclerosis (ALS) and normal tension glaucoma (NTG), but a relevant animal model is lacking, and the molecular mechanisms underlying neurodegeneration are unknown. We found that OPTN C-terminus truncation (OPTN∆C) causes late-onset neurodegeneration of retinal ganglion cells (RGCs), optic nerve (ON), and spinal cord motor neurons, preceded by a striking decrease of axonal mitochondria. Surprisingly, we discover that OPTN directly interacts with both microtubules and the mitochondrial transport complex TRAK1/KIF5B, stabilizing them for proper anterograde axonal mitochondrial transport, in a C-terminus dependent manner. Encouragingly, overexpressing OPTN/TRAK1/KIF5B reverses not only OPTN truncation-induced, but also ocular hypertension-induced neurodegeneration, and promotes striking ON regeneration. Therefore, in addition to generating new animal models for NTG and ALS, our results establish OPTN as a novel facilitator of the microtubule-dependent mitochondrial transport necessary for adequate axonal mitochondria delivery, and its loss as the likely molecular mechanism of neurodegeneration.

9.
World J Gastroenterol ; 30(11): 1556-1571, 2024 Mar 21.
Artículo en Inglés | MEDLINE | ID: mdl-38617455

RESUMEN

BACKGROUND: Hepatitis B cirrhosis (HBC) is a chronic disease characterized by irreversible diffuse liver damage and aggravated by intestinal microbial imbalance and metabolic dysfunction. Although the relationship between certain single probiotics and HBC has been explored, the impact of the complex ready-to-eat Lactobacillus paracasei N1115 (LP N1115) supplement on patients with HBC has not been determined. AIM: To compare the changes in the microbiota, inflammatory factor levels, and liver function before and after probiotic treatment in HBC patients. METHODS: This study included 160 HBC patients diagnosed at the General Hospital of Ningxia Medical University between October 2018 and December 2020. Patients were randomly divided into an intervention group that received LP N1115 supplementation and routine treatment and a control group that received routine treatment only. Fecal samples were collected at the onset and conclusion of the 12-wk intervention period. The structure of the intestinal microbiota and the levels of serological indicators, such as liver function and inflammatory factors, were assessed. RESULTS: Following LP N1115 intervention, the intestinal microbial diversity significantly increased in the intervention group (P < 0.05), and the structure of the intestinal microbiota was characterized by an increase in the proportions of probiotic microbes and a reduction in harmful bacteria. Additionally, the intervention group demonstrated notable improvements in liver function indices and significantly lower levels of inflammatory factors (P < 0.05). CONCLUSION: LP N1115 is a promising treatment for ameliorating intestinal microbial imbalance in HBC patients by modulating the structure of the intestinal microbiota, improving liver function, and reducing inflammatory factor levels.


Asunto(s)
Microbioma Gastrointestinal , Hepatitis B , Lacticaseibacillus paracasei , Humanos , Cirrosis Hepática/diagnóstico
10.
Plant Cell Rep ; 43(5): 125, 2024 Apr 22.
Artículo en Inglés | MEDLINE | ID: mdl-38647720

RESUMEN

KEY MESSAGE: The interaction network and pathway map uncover the potential crosstalk between sugar and hormone metabolisms as a possible reason for leaf senescence in P. ternata. Pinellia ternata, an environmentally sensitive medicinal plant, undergoes leaf senescence twice a year, affecting its development and yield. Understanding the potential mechanism that delays leaf senescence could theoretically decrease yield losses. In this study, a typical senescent population model was constructed, and an integrated analysis of transcriptomic and metabolomic profiles of P. ternata was conducted using two early leaf senescence populations and two stay-green populations. The result showed that two key gene modules were associated with leaf senescence which were mainly enriched in sugar and hormone signaling pathways, respectively. A network constructed by unigenes and metabolisms related to the obtained two pathways revealed that several compounds such as D-arabitol and 2MeScZR have a higher significance ranking. In addition, a total of 130 hub genes in this network were categorized into 3 classes based on connectivity. Among them, 34 hub genes were further analyzed through a pathway map, the potential crosstalk between sugar and hormone metabolisms might be an underlying reason of leaf senescence in P. ternata. These findings address the knowledge gap regarding leaf senescence in P. ternata, providing candidate germplasms for molecular breeding and laying theoretical basis for the realization of finely regulated cultivation in future.


Asunto(s)
Regulación de la Expresión Génica de las Plantas , Metabolómica , Pinellia , Reguladores del Crecimiento de las Plantas , Hojas de la Planta , Transcriptoma , Hojas de la Planta/genética , Hojas de la Planta/metabolismo , Hojas de la Planta/crecimiento & desarrollo , Pinellia/genética , Pinellia/metabolismo , Pinellia/fisiología , Pinellia/crecimiento & desarrollo , Reguladores del Crecimiento de las Plantas/metabolismo , Transcriptoma/genética , Senescencia de la Planta/genética , Perfilación de la Expresión Génica , Azúcares/metabolismo , Metaboloma/genética , Redes Reguladoras de Genes , Metabolismo de los Hidratos de Carbono/genética
11.
J Pharm Anal ; 14(4): 100899, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38634061

RESUMEN

Tyrosine kinase inhibitors (TKIs) have emerged as the first-line small molecule drugs in many cancer therapies, exerting their effects by impeding aberrant cell growth and proliferation through the modulation of tyrosine kinase-mediated signaling pathways. However, there exists a substantial inter-individual variability in the concentrations of certain TKIs and their metabolites, which may render patients with compromised immune function susceptible to diverse infections despite receiving theoretically efficacious anticancer treatments, alongside other potential side effects or adverse reactions. Therefore, an urgent need exists for an up-to-date review concerning the biological matrices relevant to bioanalysis and the sampling methods, clinical pharmacokinetics, and therapeutic drug monitoring of different TKIs. This paper provides a comprehensive overview of the advancements in pretreatment methods, such as protein precipitation (PPT), liquid-liquid extraction (LLE), solid-phase extraction (SPE), micro-SPE (µ-SPE), magnetic SPE (MSPE), and vortex-assisted dispersive SPE (VA-DSPE) achieved since 2017. It also highlights the latest analysis techniques such as newly developed high performance liquid chromatography (HPLC) and high-resolution mass spectrometry (HRMS) methods, capillary electrophoresis (CE), gas chromatography (GC), supercritical fluid chromatography (SFC) procedures, surface plasmon resonance (SPR) assays as well as novel nanoprobes-based biosensing techniques. In addition, a comparison is made between the advantages and disadvantages of different approaches while presenting critical challenges and prospects in pharmacokinetic studies and therapeutic drug monitoring.

12.
Artículo en Inglés | MEDLINE | ID: mdl-38662533

RESUMEN

Aquatic actuators based on the light-to-work conversion are of paramount significance for the development of cutting-edge fields including robots, micromachines, and intelligent systems. Herein, we report the design and synthesis of near-infrared light-driven hydrogel actuators through loading with lightweight polydopamine-modified hollow glass microspheres (PDA-HGMPs) into responsive poly(N-isopropylacrylamide) (PNIPAM) hydrogels. These PDA-HGMPs can not only function as an excellent photothermal agent but also accelerate the swelling/desewlling of hydrogels due to their reconstruction for polymer gel skeleton, which speeds up the response rate of hydrogel actuators. The resulting hydrogel actuator shows controlled movements under light illumination, including complex self-propellant and floating/sinking motions. As the proof-of-concept demonstrations, a self-sensing robot is conceptualized by integrating the PDA-HGMP-containing hydrogel actuator with an ultrathin and miniature pressure sensor. Hopefully, this work can offer some important insights into the research of smart aquatic soft actuators, paving the way to the potential applications in emerging fields including micromachines and intelligent systems.

13.
Medicine (Baltimore) ; 103(17): e37854, 2024 Apr 26.
Artículo en Inglés | MEDLINE | ID: mdl-38669433

RESUMEN

Granulomatous lobular mastitis (GLM) is an idiopathic inflammatory breast disease that tends to recur on the same side. With the accumulation of clinical cases, it has been observed that GLM can also occur contralaterally. Currently, most studies on GLM focus on treatment methods and risk factors for ipsilateral recurrence, and there are few reports on bilateral GLM. The study aimed to summarize the clinical characteristics of patients with bilateral GLM by reviewing their clinical data, and to discuss the risk factors affecting the occurrence of bilateral GLM. A retrospective study of the medical records database of patients with GLM admitted between May 2019 and August 2022 was performed. Patients were divided into bilateral GLM group (bilateral GLM group) and unilateral GLM patients (unilateral GLM group). Demographic and clinical characteristics, treatment, and follow-up were collected and analyzed. In this study, by reviewing the clinical data of 59 cases of bilateral GLM, we found that the median time between the onset of bilateral GLM on both sides was 6.63 (0-18) months. Additionally, because of the simultaneous or interval onset on both sides, the duration of the disease was longer compared to unilateral cases. Regarding the history of external hospital treatment, it was found that about 57.63% of patients with bilateral GLM received 2 or more treatment modalities, with a higher involvement of herbal medicine. Meanwhile, by counting the clinical data of the 2 groups of patients with bilateral GLM and unilateral GLM, it was shown by univariate analysis that fertility, nipple development, absolute CD4 value, and CD4/CD8 ratio were associated with contralateral onset of GLM in both groups, with inverted nipple being an independent risk factor.


Asunto(s)
Mastitis Granulomatosa , Humanos , Femenino , Factores de Riesgo , Estudios Retrospectivos , Adulto , Mastitis Granulomatosa/epidemiología , Mastitis Granulomatosa/diagnóstico , Persona de Mediana Edad , Recurrencia
14.
Anim Reprod Sci ; 264: 107460, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38564886

RESUMEN

The incidence of bovine endometritis, which has a negative impact on the reproduction of dairy cows, has been recently increasing. In this study, the differential markers and metabolites of healthy cows and cows with endometritis were analyzed by measuring blood biochemical indicators and immune factors using biochemical and enzyme-linked immunosorbent assay kits combined with nontargeted metabolomics. The LC-QTOF platform was used to evaluate the serum metabolomics of healthy cows and cows with endometritis after 21-27 days of calving. The results showed that glucose, free fatty acid, calcium, sodium, albumin, and alanine aminotransferase levels were significantly lower in the serum of cows with endometritis than in healthy cows (P < 0.05). However, the serum potassium, interleukin-1, interleukin-6, and tumor necrosis factor levels were significantly higher in cows with endometritis (P < 0.05). In addition, the serum metabolome data analysis of the two groups showed that the expression of 468 metabolites was significantly different (P < 0.05), of which 291 were upregulated and 177 were downregulated. These metabolites were involved in 78 metabolic pathways, including amino acid, nucleotide, carbohydrate, lipid, and vitamin metabolism pathways; signal transduction pathways, and other biological pathways. Taken together, negative energy balance and immune activation, which are related to local abnormalities in amino acid, lipid, and carbohydrate metabolism, were the important causes of endometritis in dairy cows. Metabolites such as glucose, carnosine, dehydroascorbic acid, L-malic acid, tetrahydrofolic acid, and UDP-glucose may be used as key indicators in the hematological diagnosis and treatment of endometritis in dairy cows.


Asunto(s)
Enfermedades de los Bovinos , Endometritis , Metabolómica , Femenino , Bovinos , Animales , Endometritis/veterinaria , Endometritis/sangre , Endometritis/metabolismo , Enfermedades de los Bovinos/sangre , Enfermedades de los Bovinos/metabolismo , Biomarcadores/sangre
15.
Biomark Res ; 12(1): 39, 2024 Apr 16.
Artículo en Inglés | MEDLINE | ID: mdl-38627840

RESUMEN

Liquid-liquid phase separation (LLPS) is a complex and subtle phenomenon whose formation and regulation take essential roles in cancer initiation, growth, progression, invasion, and metastasis. This domain holds a wealth of underutilized unstructured data that needs further excavation for potentially valuable information. Therefore, we retrospectively analyzed the global scientific knowledge in the field over the last decade by using informatics methods (such as hierarchical clustering, regression statistics, hotspot burst, and Walktrap algorithm analysis). Over the past decade, this area enjoyed a favorable development trend (Annual Growth Rate: 34.98%) and global collaboration (International Co-authorship: 27.31%). Through unsupervised hierarchical clustering based on machine learning, the global research hotspots were divided into five dominant research clusters: Cluster 1 (Effects and Mechanisms of Phase Separation in Drug Delivery), Cluster 2 (Phase Separation in Gene Expression Regulation), Cluster 3 (Phase Separation in RNA-Protein Interaction), Cluster 4 (Reference Value of Phase Separation in Neurodegenerative Diseases for Cancer Research), and Cluster 5 (Roles and Mechanisms of Phase Separation). And further time-series analysis revealed that Cluster 5 is the emerging research cluster. In addition, results from the regression curve and hotspot burst analysis point in unison to super-enhancer (a=0.5515, R2=0.6586, p=0.0044) and stress granule (a=0.8000, R2=0.6000, p=0.0085) as the most potential star molecule in this field. More interestingly, the Random-Walk-Strategy-based Walktrap algorithm further revealed that "phase separation, cancer, transcription, super-enhancer, epigenetics"(Relevance Percentage[RP]=100%, Development Percentage[DP]=29.2%), "stress granule, immunotherapy, tumor microenvironment, RNA binding protein"(RP=79.2%, DP=33.3%) and "nanoparticle, apoptosis"(RP=70.8%, DP=25.0%) are closely associated with this field, but are still under-developed and worthy of further exploration. In conclusion, this study profiled the global scientific landscape, discovered a crucial emerging research cluster, identified several pivotal research molecules, and predicted several crucial but still under-developed directions that deserve further research, providing an important reference value for subsequent basic and clinical research of phase separation in cancer.

16.
Zhongguo Zhong Yao Za Zhi ; 49(6): 1467-1473, 2024 Mar.
Artículo en Chino | MEDLINE | ID: mdl-38621930

RESUMEN

Traditional Chinese medicine(TCM) syndrome-based efficacy is an evaluation index which is unique to TCM and can reflect the advantages of TCM. The development of the methods and measurement tools for evaluating TCM syndrome-based efficacy can provide objective and quantitative evidence for the clinical efficacy evaluation of TCM and the development of new Chinese medicine preparations, being the exploration direction of innovative methods and technologies for evaluating TCM efficacy. The conventional evaluation methods are subjective and limited to the mitigation of symptoms and the improvement of physical signs, which make it difficult to form a unified evaluation standard. In addition, the evaluation methods lack unity, objectivity, and quantitative research. The scientific connotation, evaluation ideas and methods, and key technologies of the evaluation for the therapeutic effect on syndromes remain unclear, which leads to diverse evaluation modes, methods, and indexes. The syndrome-based efficacy scale provides a new idea for the objective quantification and standardization of TCM syndromes. This review systematically summarizes the methods and problems, introduces the research progress in the evaluation scales, and puts forward some thoughts on the characteristics of TCM syndrome-based efficacy evaluation, aiming to provide insights for the research in this field.


Asunto(s)
Medicamentos Herbarios Chinos , Medicina Tradicional China , Humanos , Tecnología , Síndrome , Medicamentos Herbarios Chinos/uso terapéutico
17.
Med Phys ; 51(4): 2413-2423, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38431967

RESUMEN

BACKGROUND: Individuals with asthma can vary widely in clinical presentation, severity, and pathobiology. Hyperpolarized xenon-129 (Xe129) MRI is a novel imaging method to provide 3-D mapping of both ventilation and gas exchange in the human lung. PURPOSE: To evaluate the functional changes in adults with asthma as compared to healthy controls using Xe129 MRI. METHODS: All subjects (20 controls and 20 asthmatics) underwent lung function measurements and Xe129 MRI on the same day. Outcome measures included the pulmonary ventilation defect and transfer of inspired Xe129 into two soluble compartments: tissue and blood. Ten asthmatics underwent Xe129 MRI before and after bronchodilator to test whether gas transfer measures change with bronchodilator effects. RESULTS: Initial analysis of the results revealed striking differences in gas transfer measures based on age, hence we compared outcomes in younger (n = 24, ≤ 35 years) versus older (n = 16, > 45 years) asthmatics and controls. The younger asthmatics exhibited significantly lower Xe129 gas uptake by lung tissue (Asthmatic: 0.98% ± 0.24%, Control: 1.17% ± 0.12%, P = 0.035), and higher Xe129 gas transfer from tissue to the blood (Asthmatic: 0.40 ± 0.10, Control: 0.31% ± 0.03%, P = 0.035) than the younger controls. No significant difference in Xe129 gas transfer was observed in the older group between asthmatics and controls (P > 0.05). No significant change in Xe129 transfer was observed before and after bronchodilator treatment. CONCLUSIONS: By using Xe129 MRI, we discovered heterogeneous alterations of gas transfer that have associations with age. This finding suggests a heretofore unrecognized physiological derangement in the gas/tissue/blood interface in young adults with asthma that deserves further study.


Asunto(s)
Asma , Broncodilatadores , Adulto Joven , Humanos , Adulto , Broncodilatadores/uso terapéutico , Barrera Alveolocapilar , Pulmón/diagnóstico por imagen , Asma/diagnóstico por imagen , Asma/tratamiento farmacológico , Isótopos de Xenón , Imagen por Resonancia Magnética/métodos , Xenón/uso terapéutico
18.
Materials (Basel) ; 17(6)2024 Mar 14.
Artículo en Inglés | MEDLINE | ID: mdl-38541485

RESUMEN

To study the effect of aluminum and nickel elements on the microstructures and properties of the nickel-aluminum bronze (NAB) alloy, four kinds of alloys with different compositions, ZCuAl7-7-4-2, ZCuAl8-6-4-2, ZCuAl9-5-4-2, and ZCuAl10-4-4-2, are prepared by vacuum-melting technology. The effects of different Al/Ni ratios on the microstructures of NAB are investigated using a metalloscope, scanning electron microscopy, transmission electron microscopy, and XPS analysis. The mechanical property is evaluated with microhardness testing and tensile mechanical testing. The corrosion resistance is evaluated using mass-loss testing, electrochemical testing, and corrosion-product characterization. The results show that with the increase of the Al/Ni ratio, the content of precipitated phases increases, while ß' and hard κ, which have a different morphology, appear. As the Al/Ni ratio rises from 1 to 2.5, the hardness increases from 104 HV to 202 HV, and the tensile strength increases by 394 MPa from 356 MPa to 751 MPa, but the elongation decreases substantially from 50.50% to 11.00%. The best corrosion resistance is shown on ZCuAl7-7-4-2, with a corrosion rate of 0.00267 mm/a after 30 d of static immersion corrosion in 3.5 wt.% NaCl solution. Through electrochemical testing and corrosion-product characterization, it is found that ZCuAl7-7-4-2 has the largest polarization resistance Rp, and the selective corrosion of the surface is mild.

19.
Plant Physiol Biochem ; 210: 108567, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38554538

RESUMEN

Heterotrimeric G-proteins are key modulators of multiple signaling and developmental pathways in plants, in which they act as molecular switches to engage in transmitting various stimuli signals from outside into the cells. Substantial studies have identified G proteins as essential components of the organismal response to abiotic stress, leading to adaptation and survival in plants. Meanwhile, sugars are also well acknowledged key players in stress perception, signaling, and gene expression regulation. Connections between the two significant signaling pathways in stress response are of interest to a general audience in plant biology. In this article, advances unraveling a pivotal role of G proteins in the process of sugar signals outside the cells being translated into the operation of autophagy in cells during stress are reviewed. In addition, we have presented recent findings on G proteins regulating the response to drought, salt, alkali, cold, heat and other abiotic stresses. Perspectives on G-protein research are also provided in the end. Since G protein signaling regulates many agronomic traits, elucidation of detailed mechanism of the related pathways would provide useful insights for the breeding of abiotic stress resistant and high-yield crops.


Asunto(s)
Proteínas de Unión al GTP Heterotriméricas , Proteínas de Plantas , Transducción de Señal , Estrés Fisiológico , Proteínas de Unión al GTP Heterotriméricas/metabolismo , Proteínas de Unión al GTP Heterotriméricas/genética , Proteínas de Plantas/metabolismo , Proteínas de Plantas/genética , Azúcares/metabolismo , Plantas/metabolismo , Regulación de la Expresión Génica de las Plantas , Fenómenos Fisiológicos de las Plantas
20.
J Imaging Inform Med ; 2024 Mar 21.
Artículo en Inglés | MEDLINE | ID: mdl-38514595

RESUMEN

Deep learning models have demonstrated great potential in medical imaging but are limited by the expensive, large volume of annotations required. To address this, we compared different active learning strategies by training models on subsets of the most informative images using real-world clinical datasets for brain tumor segmentation and proposing a framework that minimizes the data needed while maintaining performance. Then, 638 multi-institutional brain tumor magnetic resonance imaging scans were used to train three-dimensional U-net models and compare active learning strategies. Uncertainty estimation techniques including Bayesian estimation with dropout, bootstrapping, and margins sampling were compared to random query. Strategies to avoid annotating similar images were also considered. We determined the minimum data necessary to achieve performance equivalent to the model trained on the full dataset (α = 0.05). Bayesian approximation with dropout at training and testing showed results equivalent to that of the full data model (target) with around 30% of the training data needed by random query to achieve target performance (p = 0.018). Annotation redundancy restriction techniques can reduce the training data needed by random query to achieve target performance by 20%. We investigated various active learning strategies to minimize the annotation burden for three-dimensional brain tumor segmentation. Dropout uncertainty estimation achieved target performance with the least annotated data.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA