Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 209
Filtrar
1.
Adv Sci (Weinh) ; : e2404188, 2024 Oct 07.
Artículo en Inglés | MEDLINE | ID: mdl-39373701

RESUMEN

Neuroinflammation hallmarks the pathology of depression although the etiological complexity has not yet been resolved. Previous studies demonstrate that bacterial lipopolysaccharide induces depressive-like behaviors by activating RagA-mTOR-p70S6K signaling pathway. The current project aims to investigate whether and how brain-specific RagA overexpression triggers depressive-like behaviors in mice. Full-length RagA cDNA is cloned into the mammalian expression vector under the control of brain specific promoter, and subsequently overexpressed in the brain of mouse embryos. Indeed, RagA transgenic mice exhibit depressive-like behaviors and memory impairments. RNA-seq profiling of the prefrontal cortex (PFC) transcriptome highlights adenosine A2a receptor (ADORA2A) as a key differentially expressed gene (DEG). Western blotting confirms that ADORA2A and phospho-p70S6K are markedly elevated in RagA transgenic mice. Behavioral assessments demonstrate that ADORA2A inhibitor istradefylline markedly attenuates depressive-like behaviors. Further metabolomics reveals that N-acetylserotonin and several depression-related metabolites are downregulated while proteomic profiling showed that OLIG1 and other proteins are significantly regulated in RagA transgenic mice. Collectively, RagA overexpression alters the expression patterns of signaling proteins and the metabolism of depression-associated metabolites. RagA may cause depressive-like behaviors in mice via activating p70S6K/ADORA2A signaling pathway. Thus, RagA-p70S6K-ADORA2A signaling pathway may be a target for the development of new antidepressant therapies.

2.
Mol Cancer ; 23(1): 218, 2024 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-39354529

RESUMEN

Hepatic, biliary, and pancreatic cancer pose significant challenges in the field of digestive system diseases due to their highly malignant nature. Traditional Chinese medicine (TCM) has gained attention as a potential therapeutic approach with long-standing use in China and well-recognized clinical benefits. In this review, we systematically summarized the clinical applications of TCM that have shown promising results in clinical trials in treating hepatic, biliary, and pancreatic cancer. We highlighted several commonly used TCM therapeutics with validated efficacy through rigorous clinical trials, including Huaier Granule, Huachansu, and Icaritin. The active compounds and their potential targets have been thoroughly elucidated to offer valuable insights into the potential of TCM for anti-cancer drug discovery. We emphasized the importance of further research to bridge the gap between TCM and modern oncology, facilitating the development of evidence-based TCM treatment for these challenging malignancies.


Asunto(s)
Descubrimiento de Drogas , Medicamentos Herbarios Chinos , Neoplasias Hepáticas , Medicina Tradicional China , Humanos , Medicina Tradicional China/métodos , Medicamentos Herbarios Chinos/uso terapéutico , Medicamentos Herbarios Chinos/farmacología , Neoplasias Hepáticas/tratamiento farmacológico , Neoplasias Hepáticas/patología , Neoplasias Hepáticas/metabolismo , Neoplasias del Sistema Biliar/tratamiento farmacológico , Neoplasias del Sistema Biliar/metabolismo , Neoplasias del Sistema Biliar/patología , Animales
3.
Cells ; 13(19)2024 Sep 27.
Artículo en Inglés | MEDLINE | ID: mdl-39404384

RESUMEN

Cachexia is a late consequence of various diseases that is characterized by systemic muscle loss, with or without fat loss, leading to significant mortality. Multiple signaling pathways and molecules that increase catabolism, decrease anabolism, and interfere with muscle regeneration are activated. Non-coding RNAs (ncRNAs), such as microRNAs (miRNAs), long non-coding RNAs (lncRNAs), and circular RNAs (circRNAs), play vital roles in cachexia muscle atrophy. This review mainly provides the mechanisms of specific ncRNAs to regulate muscle loss during cachexia and discusses the role of ncRNAs in cachectic biomarkers and novel therapeutic strategies that could offer new insights for clinical practice.


Asunto(s)
Caquexia , Atrofia Muscular , ARN no Traducido , Caquexia/genética , Caquexia/patología , Caquexia/metabolismo , Humanos , Atrofia Muscular/genética , Atrofia Muscular/patología , Atrofia Muscular/metabolismo , ARN no Traducido/genética , ARN no Traducido/metabolismo , Animales , ARN Largo no Codificante/genética , ARN Largo no Codificante/metabolismo , MicroARNs/genética , MicroARNs/metabolismo , ARN Circular/genética , ARN Circular/metabolismo , Músculo Esquelético/patología , Músculo Esquelético/metabolismo , Biomarcadores/metabolismo
4.
Bioact Mater ; 42: 299-315, 2024 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-39290337

RESUMEN

Age-related osteoporosis is a metabolic skeletal disorder caused by estrogen deficiency in postmenopausal women. Prolonged use of anti-osteoporotic drugs such as bisphosphonates and FDA-approved anti-resorptive selective estrogen receptor modulators (SERMs) has been associated with various clinical drawbacks. We recently discovered a low-molecular-weight biocompatible and osteoanabolic phytoprotein, called HKUOT-S2 protein (32 kDa), from Dioscorea opposita Thunb that can accelerate bone defect healing. Here, we demonstrated that the HKUOT-S2 protein treatment can enhance osteoblasts-induced ossification and suppress osteoporosis development by upregulating skeletal estrogen receptors (ERs) ERα, ERß, and GPR30 expressions in vivo. Also, HKUOT-S2 protein estrogenic activities promoted hMSCs-osteoblasts differentiation and functions by increasing osteogenic markers, ALP, and RUNX2 expressions, ALP activity, and osteoblast biomineralization in vitro. Fulvestrant treatment impaired the HKUOT-S2 protein-induced ERs expressions, osteoblasts differentiation, and functions. Finally, we demonstrated that the HKUOT-S2 protein could bind to ERs to exert osteogenic and osteoanabolic properties. Our results showed that the biocompatible HKUOT-S2 protein can exert estrogenic and osteoanabolic properties by positively modulating skeletal estrogen receptor signaling to promote ossification and suppress osteoporosis. Currently, there is no or limited data if any, on osteoanabolic SERMs. The HKUOT-S2 protein can be applied as a new osteoanabolic SERM for osteoporosis treatment.

5.
Mol Cancer ; 23(1): 189, 2024 Sep 06.
Artículo en Inglés | MEDLINE | ID: mdl-39242496

RESUMEN

Liver cancer is a global health challenge, causing a significant social-economic burden. Hepatocellular carcinoma (HCC) is the predominant type of primary liver cancer, which is highly heterogeneous in terms of molecular and cellular signatures. Early-stage or small tumors are typically treated with surgery or ablation. Currently, chemotherapies and immunotherapies are the best treatments for unresectable tumors or advanced HCC. However, drug response and acquired resistance are not predictable with the existing systematic guidelines regarding mutation patterns and molecular biomarkers, resulting in sub-optimal treatment outcomes for many patients with atypical molecular profiles. With advanced technological platforms, valuable information such as tumor genetic alterations, epigenetic data, and tumor microenvironments can be obtained from liquid biopsy. The inter- and intra-tumoral heterogeneity of HCC are illustrated, and these collective data provide solid evidence in the decision-making process of treatment regimens. This article reviews the current understanding of HCC detection methods and aims to update the development of HCC surveillance using liquid biopsy. Recent critical findings on the molecular basis, epigenetic profiles, circulating tumor cells, circulating DNAs, and omics studies are elaborated for HCC diagnosis. Besides, biomarkers related to the choice of therapeutic options are discussed. Some notable recent clinical trials working on targeted therapies are also highlighted. Insights are provided to translate the knowledge into potential biomarkers for detection and diagnosis, prognosis, treatment response, and drug resistance indicators in clinical practice.


Asunto(s)
Biomarcadores de Tumor , Carcinoma Hepatocelular , Neoplasias Hepáticas , Humanos , Carcinoma Hepatocelular/diagnóstico , Carcinoma Hepatocelular/terapia , Carcinoma Hepatocelular/genética , Carcinoma Hepatocelular/metabolismo , Carcinoma Hepatocelular/patología , Neoplasias Hepáticas/diagnóstico , Neoplasias Hepáticas/terapia , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/metabolismo , Neoplasias Hepáticas/patología , Biopsia Líquida/métodos , Manejo de la Enfermedad , Pronóstico , Epigénesis Genética , Animales , Microambiente Tumoral
6.
Phytomedicine ; 133: 155905, 2024 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-39128301

RESUMEN

BACKGROUND: Liver cancer represents a most common and fatal cancer worldwide. Xianglian Pill (XLP) is an herbal formula holding great promise in clearing heat for treating diseases in an integrative and holistic way. However, due to the complex constituents and multiple targets, the exact molecular mechanisms of action of XLP are still unclear. PURPOSE: This study is focused on hepatocellular carcinoma (HCC), the most common type of liver cancer. The aim of this study is to develop a fast and efficient model to investigate the anti-HCC effects of XLP, and its underlying mechanisms. MATERIALS AND METHODS: HepG2, Hep3B, Mahlavu, HuH-7, or Li-7 cells were employed in the studies. The ingredients were analyzed using liquid chromatography tandem mass spectrometry (LC-MS). RNA sequencing combined with network pharmacology was used to elucidate the therapeutic mechanism of XLP in HCC via in silico and in vitro studies. An approach was constructed to improve the accuracy of prediction in network pharmacology by combining big data and omics. RESULTS: First, we identified 13 potential ingredients in the serum of XLP-administered rats using LC-MS. Then the network pharmacology was performed to predict that XLP demonstrates anti-HCC effects via targeting 94 genes involving in 13 components. Modifying the database thresholds might impact the accuracy of network pharmacology analysis based on RNA sequencing data. For instance, when the matching rate peak is 0.43, the correctness rate peak is 0.85. Moreover, 9 components of XLP and 6 relevant genes have been verified with CCK-8 and RT-qPCR assay, respectively. CONCLUSION: Based on the crossing studies of RNA sequencing and network pharmacology, XLP was found to improve HCC through multiple targets and pathways. Additionally, the study provides a way to optimize network pharmacology analysis in herbal medicine research.


Asunto(s)
Carcinoma Hepatocelular , Medicamentos Herbarios Chinos , Neoplasias Hepáticas , Farmacología en Red , Carcinoma Hepatocelular/tratamiento farmacológico , Neoplasias Hepáticas/tratamiento farmacológico , Humanos , Medicamentos Herbarios Chinos/farmacología , Medicamentos Herbarios Chinos/química , Animales , Células Hep G2 , Línea Celular Tumoral , Ratas , Análisis de Secuencia de ARN , Antineoplásicos Fitogénicos/farmacología , Espectrometría de Masas en Tándem , Simulación por Computador , Masculino , Ratas Sprague-Dawley , Cromatografía Liquida/métodos
7.
Phytomedicine ; 133: 155913, 2024 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-39084183

RESUMEN

BACKGROUND: Human hepatocellular carcinoma (HCC) acquired resistance to anti-cancer agents due to the presence of immunosuppressive tumour microenvironment (TME) established by the interaction between tumour cells and immune populations. New treatment targeting the interaction is urgently needed and clinically beneficial to patients with HCC. This study aims to explore the anti-tumour effect of a Traditional Chinese Medicine formula Siwu Decoction (SWD) and its potential mechanism. MATERIALS AND METHODS: The chemical profile of SWD was determined by high-performance liquid chromatography coupled with mass spectrometry. In vitro and in vivo effects of SWD in regressing HCC were assessed. The role of myeloid-derived suppressor cells (MDSCs) in mediating SWD-induced HCC inhibition was determined by adoptive transfer assay. The regulation of SWD-induced interaction between HCC cells and MDSCs was also confirmed both in vitro and in vivo. RESULTS: SWD dose-dependent inhibited the HCC growth and lung metastasis in an orthotopic growth tumour in mice, without significant toxicity and adverse side effect. SWD induced necroptosis in HCC cells, but did not directly inhibit in vitro culture of MDSCs, instead, SWD-treated HCC cell culture supernatant suppressed MDSCs by inducing its cell apoptosis. The necroptotic response of HCC cells can also suppress the MDSCs population in the TME without reducing circulating MDSCs infiltration into the tumours. Adoptive transfer of MDSCs recovered tumour growth and lung metastasis of HCC in SWD-treated mice. In HCC cells, SWD induced a necroptotic response, and blockade of necroptotic response in HCC cells recovered the MDSCs population in vitro and in vivo, and restored tumour growth and lung metastasis in SWD-treated mice. A combination of SWD improves the anti-HCC efficacy of sorafenib without inducing adverse side effects. Albiflorin, the effective compound of SWD, its anti-HCC manner has been verified to be consistent with that of SWD. CONCLUSION: Our study observed for the first time that SWD can suppress HCC by regulating MDSCs through necroptosis of tumour cells in the TME. The main effective compound of SWD, albiflorin can be a potential adjuvant therapy in the clinical management of human HCC.


Asunto(s)
Carcinoma Hepatocelular , Medicamentos Herbarios Chinos , Neoplasias Hepáticas , Células Supresoras de Origen Mieloide , Necroptosis , Microambiente Tumoral , Animales , Carcinoma Hepatocelular/tratamiento farmacológico , Medicamentos Herbarios Chinos/farmacología , Células Supresoras de Origen Mieloide/efectos de los fármacos , Neoplasias Hepáticas/tratamiento farmacológico , Humanos , Microambiente Tumoral/efectos de los fármacos , Ratones , Línea Celular Tumoral , Necroptosis/efectos de los fármacos , Masculino , Ratones Endogámicos BALB C , Antineoplásicos Fitogénicos/farmacología , Ratones Endogámicos C57BL , Neoplasias Pulmonares/tratamiento farmacológico
8.
Curr Neuropharmacol ; 22(14): 2353-2367, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38752632

RESUMEN

Alzheimer's Disease (AD) is a progressive neurodegenerative disorder that greatly affects the health and life quality of the elderly population. Existing drugs mainly alleviate symptoms but fail to halt disease progression, underscoring the urgent need for the development of novel drugs. Based on the neuroprotective effects of flavonoid quercetin in AD, this study was designed to identify potential AD-related targets for quercetin and perform in silico prediction of promising analogs for the treatment of AD. Database mining suggested death-associated protein kinase 1 (DAPK1) as the most promising AD-related target for quercetin among seven protein candidates. To achieve better biological effects for the treatment of AD, we devised a series of quercetin analogs as ligands for DAPK1, and molecular docking analyses, absorption, distribution, metabolism, and excretion (ADME) predictions, as well as molecular dynamics (MD) simulations, were performed. The energy for drug-protein interaction was predicted and ranked. As a result, quercetin-A1a and quercetin-A1a1 out of 19 quercetin analogs exhibited the lowest interaction energy for binding to DAPK1 than quercetin, and they had similar dynamics performance with quercetin. In addition, quercetin-A1a and quercetin-A1a1 were predicted to have better water solubility. Thus, quercetin-A1a and quercetin-A1a1 could be promising agents for the treatment of AD. Our findings paved the way for further experimental studies and the development of novel drugs.


Asunto(s)
Enfermedad de Alzheimer , Simulación por Computador , Proteínas Quinasas Asociadas a Muerte Celular , Simulación del Acoplamiento Molecular , Quercetina , Quercetina/farmacología , Quercetina/química , Proteínas Quinasas Asociadas a Muerte Celular/metabolismo , Enfermedad de Alzheimer/tratamiento farmacológico , Humanos , Simulación de Dinámica Molecular , Fármacos Neuroprotectores/farmacología
9.
Mol Cancer ; 23(1): 74, 2024 Apr 06.
Artículo en Inglés | MEDLINE | ID: mdl-38582885

RESUMEN

BACKGROUND AND AIMS: Sorafenib is a major nonsurgical option for patients with advanced hepatocellular carcinoma (HCC); however, its clinical efficacy is largely undermined by the acquisition of resistance. The aim of this study was to identify the key lncRNA involved in the regulation of the sorafenib response in HCC. MATERIALS AND METHODS: A clustered regularly interspaced short palindromic repeats (CRISPR)/CRISPR-associated protein 9 (Cas9) single-guide RNA (sgRNA) synergistic activation mediator (SAM)-pooled lncRNA library was applied to screen for the key lncRNA regulated by sorafenib treatment. The role of the identified lncRNA in mediating the sorafenib response in HCC was examined in vitro and in vivo. The underlying mechanism was delineated by proteomic analysis. The clinical significance of the expression of the identified lncRNA was evaluated by multiplex immunostaining on a human HCC microtissue array. RESULTS: CRISPR/Cas9 lncRNA library screening revealed that Linc01056 was among the most downregulated lncRNAs in sorafenib-resistant HCC cells. Knockdown of Linc01056 reduced the sensitivity of HCC cells to sorafenib, suppressing apoptosis in vitro and promoting tumour growth in mice in vivo. Proteomic analysis revealed that Linc01056 knockdown in sorafenib-treated HCC cells induced genes related to fatty acid oxidation (FAO) while repressing glycolysis-associated genes, leading to a metabolic switch favouring higher intracellular energy production. FAO inhibition in HCC cells with Linc01056 knockdown significantly restored sensitivity to sorafenib. Mechanistically, we determined that PPARα is the critical molecule governing the metabolic switch upon Linc01056 knockdown in HCC cells and indeed, PPARα inhibition restored the sorafenib response in HCC cells in vitro and HCC tumours in vivo. Clinically, Linc01056 expression predicted optimal overall and progression-free survival outcomes in HCC patients and predicted a better sorafenib response. Linc01056 expression indicated a low FAO level in HCC. CONCLUSION: Our study identified Linc01056 as a critical epigenetic regulator and potential therapeutic target in the regulation of the sorafenib response in HCC.


Asunto(s)
Carcinoma Hepatocelular , Neoplasias Hepáticas , ARN Largo no Codificante , Humanos , Ratones , Animales , Sorafenib/farmacología , Sorafenib/uso terapéutico , Carcinoma Hepatocelular/tratamiento farmacológico , Carcinoma Hepatocelular/genética , Carcinoma Hepatocelular/metabolismo , ARN Largo no Codificante/genética , Neoplasias Hepáticas/tratamiento farmacológico , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/metabolismo , ARN Guía de Sistemas CRISPR-Cas , PPAR alfa/genética , PPAR alfa/metabolismo , PPAR alfa/uso terapéutico , Proteómica , Línea Celular Tumoral , Resistencia a Antineoplásicos/genética , Regulación Neoplásica de la Expresión Génica
10.
Front Mol Biosci ; 11: 1366020, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38633216

RESUMEN

Objective: Diabetic retinopathy (DR) is a severe diabetic complication that leads to severe visual impairment or blindness. He-Ying-Qing-Re formula (HF), a traditional Chinese medicinal concoction, has been identified as an efficient therapy for DR with retinal vascular dysfunction for decades and has been experimentally reported to ameliorate retinal conditions in diabetic mice. This study endeavors to explore the therapeutic potential of HF with key ingredients in DR and its underlying novel mechanisms. Methods: Co-expression gene modules and hub genes were calculated by weighted gene co-expression network analysis (WGCNA) based on transcriptome sequencing data from high-glucose-treated adult retinal pigment epithelial cell line-19 (ARPE-19). The chromatographic fingerprint of HF was established by ultra-performance liquid chromatography coupled with high-resolution mass spectrometry (UPLC-Q-TOF-MS). The molecular affinity of the herbal compound was measured by molecular docking. Reactive oxygen species (ROS) was measured by a DCFDA/H2DCFDA assay. Apoptosis was detected using the TUNEL Assay Kit, while ELISA, Western blot, and real-time quantitative reverse transcription polymerase chain reaction (qRT-PCR) were used for detecting the cytokine, protein, and mRNA expressions, respectively. Results: Key compounds in HF were identified as luteolin, paeoniflorin, and nobiletin. For WGCNA, ME-salmon ("protein deacetylation") was negatively correlated with ME-purple ("oxidative impairment") in high-glucose-treated ARPE-19. Luteolin has a high affinity for SIRT1 and P53, as indicated by molecular docking. Luteolin has a hypoglycemic effect on type I diabetic mice. Moreover, HF and luteolin suppress oxidative stress production (ROS and MDA), inflammatory factor expression (IL-6, TNF-α, IL1-ß, and MCP-1), and apoptosis, as shown in the in vivo and in vitro experiments. Concurrently, treatment with HF and luteolin led to an upregulation of SIRT1 and a corresponding downregulation of P53. Conclusion: Using HF and its active compound luteolin as therapeutic agents offers a promising approach to diabetic retinopathy treatment. It primarily suppressed protein acetylation and oxidative stress via the SIRT1/P53 pathway in retinal pigment epithelial cells.

11.
Biomedicines ; 12(3)2024 Feb 25.
Artículo en Inglés | MEDLINE | ID: mdl-38540128

RESUMEN

Hepatobiliary diseases have a high prevalence worldwide, with a wide range of diseases involved in the liver and biliary system. Modifications in gut microbiota have been proven to have an association with unbalanced intestinal homeostasis and the dysfunction of host metabolism and the immune system, which can be the risk factors for many hepatobiliary diseases, such as nonalcoholic fatty liver disease (NAFLD), alcoholic liver disease (ALD), nonalcoholic fatty steatohepatitis (NASH), hepatitis, cirrhosis, hepatocellular carcinoma (HCC) and cholestasis, as well as infection due to liver transplantation. Probiotics are commonly used gut microbiota-targeted strategies to treat dysbiosis and intestinal dysfunction, as well as the gut-liver axis, which can enhance the effectiveness of probiotics in the management of liver diseases. Recent studies have explored more potential single or mixed strains of probiotics, and bioinformatics methods can be used to investigate the potential mechanisms of probiotics on liver diseases. In this review, we summarize the preclinical and clinical studies on the role of probiotics in hepatobiliary diseases from 2018 to 2023, revealing the possible mechanism of probiotics in the treatment of hepatobiliary diseases and discussing the limitations of probiotics in treating hepatobiliary diseases. This review provides updated evidence for the development of probiotic products, exploration of new probiotic strains, and support for clinical studies. Further studies should focus on the safety, viability, and stability of probiotics, as well as medication dosage and duration in clinical practice.

12.
J Exp Clin Cancer Res ; 43(1): 42, 2024 Feb 06.
Artículo en Inglés | MEDLINE | ID: mdl-38317186

RESUMEN

BACKGROUND: Par-3 Family Cell Polarity Regulator (PARD3) is a cellular protein essential for asymmetric cell division and polarized growth. This study aimed to study the role of PARD3 in hepatic tumorigenesis. METHODS: The essential role of PARD3 in mediating hepatic tumorigenesis was assessed in diet-induced spontaneous liver tumour and syngeneic tumour models. The mechanism of PARD3 was delineated by bulk and single-cell RNA sequencing. The clinical significance of PARD3 was identified by tissue array analysis. RESULTS: PARD3 was overexpressed in tumour tissues and PARD3 overexpression was positively correlated with high tumour stage as well as the poor prognosis in patients. In models of spontaneous liver cancer induced by choline-deficient, amino acid-defined (CDAA) and methionine-choline-deficient (MCD) diets, upregulation of PARD3 was induced specifically at the tumorigenesis stage rather than other early stages of liver disease progression. Site-directed knockout of PARD3 using an adeno-associated virus 8 (AAV8)-delivered CRISPR/Cas9 single-guide RNA (sgRNA) plasmid blocked hepatic tumorigenesis, while PARD3 overexpression accelerated liver tumour progression. In particular, single-cell sequencing analysis suggested that PARD3 was enriched in primitive tumour cells and its overexpression enhanced tumour-initiating cell (TICs). Overexpression of PARD3 maintained the self-renewal ability of the CD133+ TIC population within hepatocellular carcinoma (HCC) cells and promoted the in vitro and in vivo tumorigenicity of CD133+ TICs. Transcriptome analysis revealed that Sonic Hedgehog (SHH) signalling was activated in PARD3-overexpressing CD133+ TICs. Mechanistically, PARD3 interacted with aPKC to further activate SHH signalling and downstream stemness-related genes. Suppression of SHH signalling and aPKC expression attenuated the in vitro and in vivo tumorigenicity of PARD3-overexpressing CD133+ TICs. Tissue array analysis revealed that PARD3 expression was positively associated with the phosphorylation of aPKC, SOX2 and Gli1 and that the combination of these markers could be used to stratify HCC patients into two clusters with different clinicopathological characteristics and overall survival prognoses. The natural compound berberine was selected as a potent suppressor of PARD3 expression and could be used as a preventive agent for liver cancer that completely blocks diet-induced hepatic tumorigenesis in a PARD3-dependent manner. CONCLUSION: This study revealed PARD3 as a potential preventive target of liver tumorigenesis via TIC regulation.


Asunto(s)
Proteínas Adaptadoras Transductoras de Señales , Carcinoma Hepatocelular , Proteínas de Ciclo Celular , Neoplasias Hepáticas , Humanos , Proteínas Adaptadoras Transductoras de Señales/metabolismo , Carcinogénesis/metabolismo , Carcinoma Hepatocelular/patología , Proteínas de Ciclo Celular/metabolismo , Línea Celular Tumoral , Transformación Celular Neoplásica/metabolismo , Colina/metabolismo , Proteínas Hedgehog/genética , Proteínas Hedgehog/metabolismo , Neoplasias Hepáticas/patología , Células Madre Neoplásicas/metabolismo , ARN Guía de Sistemas CRISPR-Cas
14.
Int J Biol Macromol ; 263(Pt 2): 130430, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38403218

RESUMEN

Ecologically feasible strategies for constructing superhydrophobic surfaces offer versatile applications in waterproofing, self-cleaning, selective absorption, and corrosion protection. Herein, we prepared low-surface-energy branched-chain-enriched micronanorod (F@SiO2@MNC) by hydrolyzing silane coupling agent and modifying fluoropolymer using micro-nanocellulose extracted from waste straw (Chinese hemp). These rods were sprayed and adhered to various substrates precoated with a binder, resulting in superhydrophobic surfaces. F@SiO2@MNC addition allowed for the formation of stable spherical liquid droplets when in contact with different types of aqueous liquids. Furthermore, these surfaces demonstrated excellent self-cleaning, robustness, abrasion resistance, UV resistance, cycling stability, and other multifunctionalities. They significantly enhanced the mechanical properties of filter paper, effectively separated oil water mixtures, and improved the corrosion resistance of metals. Our proposed strategy represents a novel approach for developing multifunctional coatings assembled from micronanocellulose.


Asunto(s)
Cannabis , Dióxido de Silicio , Corrosión , Interacciones Hidrofóbicas e Hidrofílicas , China
15.
Int Rev Cell Mol Biol ; 383: 89-144, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38359972

RESUMEN

Epigenetics is a heritable and reversible modification that occurs independent of the alteration of primary DNA sequence but remarkably affects genetic expression. Aberrant epigenetic regulators are frequently observed in cancer progression not only influencing the behavior of tumor cells but also the tumor-associated microenvironment (TME). Increasing evidence has shown their great potential as biomarkers to predict clinical outcomes and chemoresistance. Hence, targeting the deregulated epigenetic regulators would be a compelling strategy for cancer treatment. So far, current epigenetic drugs have shown promising efficacy in both preclinical trials and clinical treatment of cancer, which encourages research discoveries on the development of novel epigenetic inhibitors either from natural compounds or artificial synthesis. However, only a few have been approved by the FDA, and more effort needs to be put into the related research. This chapter will update the applications and latest progress of epigenetic inhibitors in cancer treatment and provide prospects for the future development of epigenetic drugs.


Asunto(s)
Metilación de ADN , Neoplasias , Humanos , Epigénesis Genética , Neoplasias/tratamiento farmacológico , Neoplasias/genética , Neoplasias/patología , Microambiente Tumoral
16.
Food Funct ; 15(4): 1758-1778, 2024 Feb 19.
Artículo en Inglés | MEDLINE | ID: mdl-38240135

RESUMEN

Diabetes is a global public health issue, characterized by an abnormal level of blood glucose. It can be classified into type 1, type 2, gestational, and other rare diabetes. Recent studies have reported that many dietary natural products exhibit anti-diabetic activity. In this narrative review, the effects and underlying mechanisms of dietary natural products on diabetes are summarized based on the results from epidemiological, experimental, and clinical studies. Some fruits (e.g., grape, blueberry, and cherry), vegetables (e.g., bitter melon and Lycium barbarum leaves), grains (e.g., oat, rye, and brown rice), legumes (e.g., soybean and black bean), spices (e.g., cinnamon and turmeric) and medicinal herbs (e.g., Aloe vera leaf and Nigella sativa), and vitamin C and carotenoids could play important roles in the prevention and management of diabetes. Their underlying mechanisms include exerting antioxidant, anti-inflammatory, and anti-glycation effects, inhibiting carbohydrate-hydrolyzing enzymes, enhancing insulin action, alleviating insulin resistance, modulating the gut microbiota, and so on. This review can provide people with a comprehensive knowledge of anti-diabetic dietary natural products, and support their further development into functional food to prevent and manage diabetes.


Asunto(s)
Productos Biológicos , Diabetes Mellitus , Humanos , Productos Biológicos/farmacología , Productos Biológicos/uso terapéutico , Diabetes Mellitus/tratamiento farmacológico , Antioxidantes/análisis , Verduras , Frutas/química
17.
Int J Biol Sci ; 19(16): 5257-5274, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37928255

RESUMEN

A high postoperative tumour recurrence rate has significantly rendered a poorer prognosis in hepatocellular carcinoma (HCC) patients. The aim of this study is to identify a natural compound genipin as a potential and effective candidate to suppress the postoperative recurrence of HCC. Clinical analysis revealed that infiltration of macrophage into the adjacent tissue but not HCC predicted patients' poor prognosis on recurrence-free survival. Genipin intervention suppressed the Ly6C+CD11b+F4/80+ pro-inflammatory macrophage infiltration in the postoperative liver of mice. Adoptive transfer of pro-inflammatory monocytic cells completely abolished the inhibitory effect of genipin on HCC recurrence. Transcriptomic analysis on FACs-sorted macrophages from the postoperative livers of mice revealed that PPARγ signalling was involved in the regulatory effect of genipin. Genipin is directly bound to PPARγ, causing PPARγ-induced p65 degradation, which in turn suppressed the transcriptional activation of CCR2 signalling. PPARγ antagonist GW9662 abrogated the effects of genipin on CCR2-medaited macrophage infiltration as well as HCC recurrence. Cytokine array analysis identified that genipin intervention potently suppressed the secretion of CCL2 further partially contributed to the pro-inflammatory macrophage infiltration into the postoperative liver. Multiplex immunostaining on tissue array of human HCC revealed that PPARγ expression was inversely associated with CCL2 and the macrophage infiltration in the adjacent liver of HCC patients. Our works provide scientific evidence for the therapeutic potential of genipin as a PPARγ agonist in preventing postoperative recurrence of HCC.


Asunto(s)
Carcinoma Hepatocelular , Neoplasias Hepáticas , Humanos , Animales , Ratones , Carcinoma Hepatocelular/metabolismo , Neoplasias Hepáticas/metabolismo , PPAR gamma/genética , Recurrencia Local de Neoplasia , Macrófagos , Receptores CCR2/genética
18.
Drug Resist Updat ; 71: 101015, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-37924725

RESUMEN

AIMS: Therapeutic outcome of sorafenib in hepatocellular carcinoma (HCC) is undermined by the development of drug resistance. This study aimed to identify the critical microRNA (miRNA) which is responsible for sorafenib resistance at the genomic level. METHODS: CRISPR/Cas9 screen followed by gain- and loss-of-function assays both in vitro and in vivo were applied to identify the role of miR-3689a-3p in mediating sorafenib response in HCC. The upstream and downstream molecules of miR-3689a-3p and their mechanism of action were investigated. RESULTS: CRISPR/Cas9 screening identified miR-3689a-3p was the most up-regulated miRNA in sorafenib sensitive HCC. Knockdown of miR-3689a-3p significantly increased sorafenib resistance, while its overexpression sensitized HCC response to sorafenib treatment. Proteomic analysis revealed that the effect of miR-3689a-3p was related to the copper-dependent mitochondrial superoxide dismutase type 1 (SOD1) activity. Mechanistically, miR-3689a-3p targeted the 3'UTR of the intracellular copper chaperone for superoxide dismutase (CCS) and suppressed its expression. As a result, miR-3689a-3p disrupted the intracellular copper trafficking and reduced SOD1-mediated scavenge of mitochondrial oxidative stress that eventually caused HCC cell death in response to sorafenib treatment. CCS overexpression blunted sorafenib response in HCC. Clinically, miR-3689a-3p was down-regulated in HCC and predicted favorable prognosis for HCC patients. CONCLUSION: Our findings provide comprehensive evidence for miR-3689a-3p as a positive regulator and potential druggable target for improving sorafenib treatment in HCC.


Asunto(s)
Carcinoma Hepatocelular , Neoplasias Hepáticas , MicroARNs , Humanos , Carcinoma Hepatocelular/tratamiento farmacológico , Carcinoma Hepatocelular/genética , Sorafenib/farmacología , Sorafenib/uso terapéutico , Superóxido Dismutasa-1 , Sistemas CRISPR-Cas , Cobre , Proteómica , Neoplasias Hepáticas/tratamiento farmacológico , Neoplasias Hepáticas/genética , MicroARNs/genética , Superóxido Dismutasa/genética , Estrés Oxidativo/genética
19.
Phytother Res ; 37(11): 5243-5278, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-37795775

RESUMEN

As a worldwide public health issue, cancer-induced cachexia can result in decreasing physical function and survival rate. However, the therapeutic effects of conventional approaches, including pharmacotherapy, exercise and nutritional intervention, are far from satisfactory. Herbal medicines (HMs), especially Traditional Chinese Medicine (TCM), are reported to effectively treat cachexia for centuries. The inclusion criteria of all participants in this study pointed to the diagnosis of cachexia, the trial group used herbal medicine (HM) in complementary and alternative medicine, etc. Twelve databases, including EMbase, PubMed, Web of science, Cochrane CENTRAL, CINAHL, CINAHLPlus, PsycINFO, AMED, China Biology Medicine disc (CBM), China National Knowledge Infrastructure (CNKI), Wanfang and Chongqing VIP (CQVIP) were retrieved from inception to March 28, 2022. We conducted the meta-analysis utilizing RevMan 5.3. A trial sequential analysis (TSA) was conducted to assess the adequacy of the sample size for the outcomes. We have registered the protocol and the registration number was CRD42022336446. A total of 66 studies were included, containing 3654 patients diagnosed with cancer cachexia, of which 1833 patients were assigned to the trial group and 1821 patients were treated in the control group. Outcomes cover the primary indicator KPS (RR = 1.84, 95%CI = [1.61, 2.09], p < 0.00001), and other outcomes including adverse events rate (RR = 0.37, 95%CI = [0.23, 0.58], p < 0.0001), albumin (MD = 2.14, 95%CI = [1.56, 2.71], p < 0.00001), haemoglobin (MD = 4.88, 95%CI = [3.26, 6.50], p < 0.00001), TCM syndrome effect (MD = 1.47, 95%CI = [1.31, 1.65], p < 0.00001), effect of weight (RR = 1.62, 95%CI = [1.34, 1.95], p < 0.00001), effect of appetite (RR = 1.23, 95%CI = [1.13, 1.34], p < 0.00001), FAACT (RR = 7.81, 95%CI = [6.12, 9.50], p < 0.00001), PG-SGA (MD = -2.16, 95%CI = [-2.65, -1.67], p < 0.00001) and QOL (MD = 5.76, 95%CI = [4.04, 7.48], p < 0.00001), suggesting that HMs or HMs combined with conventional treatment have an ameliorating effect on cachexia in each respect. Subgroup analysis showed that the five HMs with the best effect on improving KPS and their optimal doses were Coicis Semen (Yiyiren) in 10 g group, Citri Reticulatae Pericarpium (Chenpi) in 15 g group, Dioscoreae Rhizoma (Shanyao) in 10 g group, Ophiopogonis Radix (Maidong) in 10 g group and Ginseng Radix Et Rhizoma (Renshen) in 20 g group. In addition, there were HM combinations of levels 2-6. Egger's test showed publication bias for five outcomes. HMs have a significant effect on improving cancer cachexia on FAACT, TCM syndrome, KPS, QOL, appetite, nutritional status (evaluated by PG-SGA scale), weight, levels of albumin and haemoglobin. And the Adverse events rate is less than that of Western Medicine. The herbs with the best curative effect and their optimal dose were Dioscoreae R. (10 g), Citri R.P. (15 g), Coicis S. (10 g), Ophiopogonis R. (10 g) and Ginseng R.E.R. (20 g). Due to the quality of included studies is not high, further high-quality studies are needed to firmly establish the clinical efficacy of HM.


Asunto(s)
Medicamentos Herbarios Chinos , Neoplasias , Plantas Medicinales , Humanos , Calidad de Vida , Caquexia/etiología , Caquexia/inducido químicamente , Medicamentos Herbarios Chinos/uso terapéutico , Neoplasias/complicaciones , Neoplasias/tratamiento farmacológico , Albúminas , Hemoglobinas
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...